Skip to main content
Log in

Salt pretreatment alleviated salt-induced photoinhibition in sweet sorghum

  • Published:
Theoretical and Experimental Plant Physiology Aims and scope Submit manuscript

Abstract

Sweet sorghum is an important energy crop. This study aimed to investigate the effects of salt pretreatment on the interaction between photosystem II (PSII) and photosystem I (PSI) upon salt stress. In this study, sweet sorghum was pretreated with 150 mM NaCl for 10 days, and subsequently, the pretreated plants were subjected to severe salt stress at 300 mM NaCl. PSII and PSI photoinhibition occurred in non-pretreated plants after 4 days of salt stress, as the maximum quantum yield of PSII (Fv/Fm) and the maximal photochemical capacity of PSI (△MR/MR0) significantly decreased, and their normal coordination was destroyed. The significant positive correlation between Fv/Fm and △MR/MR0 under salt stress indicated that PSII photoinhibition was in relation to PSI photoinhibition, and PSI photoinhibition might lead to PSII photoinhibition through inhibiting electron transport at the acceptor side of PSII. Salt stress did not induce PSII photoinhibition in salt-pretreated plants, and thus, salt pretreatment protected PSI against photoinhibition not by aggravating PSII photoinhibition. Salt pretreatment mitigated the decrease in CO2 assimilation, reduced the feedback inhibition on photosynthetic electron transport and then contributed to suppressing PSI and PSII photoinhibition in sweet sorghum under salt stress. Therefore, the normal coordination between PSII and PSI was maintained in salt-pretreated plants. In conclusion, salt pretreatment ensured normal PSII and PSI coordination by preventing photoinhibition in sweet sorghum under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Ci:

Intercellular CO2 concentration

ETo/ABS:

Quantum yield for electron transport

ETo/TRo:

Probability that an electron moves further than primary acceptor of PSII

Fv/Fm:

The maximal quantum yield of PSII

gs :

Stomatal conductance

MDA:

Malondialdehyde

PSI:

Photosystem I

PSII:

Photosystem II

ROS:

Reactive oxygen species

△MR/MR0 :

The maximal photochemical capacity of PSI

ΦPSII:

Actual photochemical efficiency of PSII

1−qP:

Excitation pressure of PSII

References

  • Almodares A, Hadi MR, Ahmadpour H (2008) Sorghum stem yield and soluble carbohydrates under different salinity levels. Afr J Biotechnol 7:4051–4055

    CAS  Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Induction of increased salt tolerance in sorghum bicolor by NaCl pretreatment. J Exp Bot 41:29–34

    Article  CAS  Google Scholar 

  • Arnon DI (1950) Dennis Robert Hoagland: 1884–1949. Science 112(2921):739–742

    Article  CAS  PubMed  Google Scholar 

  • Azzabi G, Pinnola A, Betterle N, Bassi R, Alboresi A (2012) Enhancement of non-photochemical quenching in the bryophyte Physcomitrella patens during acclimation to salt and osmotic stress. Plant Cell Physiol 53(10):1815–1825

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Djanaguiraman M, Sheeba JA, Shanker AK, Devi DD, Bangarusamy U (2006) Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284:363–373

    Article  CAS  Google Scholar 

  • Feng LL, Han YJ, Liu G, An BG, Yang J, Yang GH, Li YS, Zhu YG (2007) Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct Plant Biol 34:822–834

    Article  CAS  Google Scholar 

  • Guerrero RY, González LM, Dell’Amico J, Núñez M, Pieters AJ (2014) Reversion of deleterious effects of salt stress by activation of ROS detoxifying enzymes via foliar application of 24-epibrassinolide in rice seedlings. Theor Exp Plant Physiol 27:31–40

    Article  Google Scholar 

  • Kalaji HM, Pietkiewicz S (1993) Salinity effects on plant growth and other physiological processes. Acta Physiol Plant 15:89–124

    Google Scholar 

  • Kalaji HM, Govindjee Bosa K, Koscielniak J, Zuk-Golaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  CAS  Google Scholar 

  • Kalaji HM, Goltsev V, Bosa K, Allakhverdiev SI, Strasser RJ, Govindjee (2012) Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. Photosynth Res 114:69–96

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V (2014a) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25

    Article  CAS  PubMed  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dabrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli DB, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serodio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014b) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiani-Pouya A (2015) Changes in activities of antioxidant enzymes and photosynthetic attributes in triticale (×Triticosecale Wittmack) genotypes in response to long-term salt stress at two distinct growth stages. Acta Physiol Plant 37:72

    Article  Google Scholar 

  • Koyro HW, Hussain T, Huchzermeyer B, Khan MA (2013) Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot 91:22–29

    Article  CAS  Google Scholar 

  • Kudoh H, Sonoike K (2002) Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta 215:541–548

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Parry MAJ, Medrano H (2004) Improving resistance to drought and salinity in plants. Ann Appl Biol 144:249–250

    Article  Google Scholar 

  • Li XG, Wang XM, Meng QW, Zou Q (2004) Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica 42:257–262

    Article  CAS  Google Scholar 

  • Loreto F, Centritto M, Chartzoulakis K (2003) Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant Cell Environ 26:595–601

    Article  CAS  Google Scholar 

  • Lu KX, Yang Y, He Y, Jiang DA (2008) Induction of cyclic electron flow around photosystem 1 and state transition are correlated with salt tolerance in soybean. Photosynthetica 46:10–16

    Article  CAS  Google Scholar 

  • Lu KX, Cao BH, Feng XP, He Y, Jiang DA (2009) Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosynthetica 47:381–387

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Nishiyamaa Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  Google Scholar 

  • Oukarroum A, Bussotti F, Goltsev V, Kalaji HM (2014) Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Environ Exp Bot 109:80–88

    Article  Google Scholar 

  • Rozema J, Flowers T (2008) Ecology crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Kunda P, Biswas AK (2012) Influence of sodium chloride on the regulation of Krebs cycle intermediates and enzymes of respiratory chain in mungbean (Vigna radiata L. Wilczek) seedlings. Plant Physiol Biochem 60:214–222

    Article  CAS  PubMed  Google Scholar 

  • Schansker G, Srivastava A, Govindjee Strasser RJ (2003) Characterization of the 820 nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Funct Plant Biol 30:785–796

    Article  CAS  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay YF, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivritepe HO, Sivritepe N, Eris A, Turhan E (2005) The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Sci Hortic 106:568–581

    Article  CAS  Google Scholar 

  • Song J, Shi GW, Gao B, Fan H, Wang BS (2011) Waterlogging and salinity effects on two Suaeda salsa populations. Physiol Plant 141:343–351

    Article  CAS  PubMed  Google Scholar 

  • Sonoike K (1996) Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species. Plant Sci 115:157–164

    Article  CAS  Google Scholar 

  • Sonoike K (2011) Photoinhibition of photosystem I. Physiol Plant 142:56–64

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll-alpha fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivatava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor & Francis, Bristol, pp 445–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Tajdoost S, Farboodnia T, Heidari R (2007) Salt pretreatment enhance salt tolerance in Zea mays L. seedlings. Pak J Biol Sci 10:2086–2090

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Shimizu K, Kato M, Ueda T (2000) Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiol Plant 110:59–63

    Article  CAS  Google Scholar 

  • Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T (2011) Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crop Res 120:38–46

    Article  Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Fariduddin Q (2013) Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea. Saudi J Biol Sci 20:183–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan K, Chen W, He XY, Zhang GY, Xu S, Wang LL (2010) Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environ Exp Bot 69:198–204

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao H, Zhao S, Zhang L, Zhang L, Xu G, Sun J (2012) Responses of photosynthesis and photosystem II to higher temperature and salt stress in sorghum. J Agron Crop Sci 198:218–226

    Article  CAS  Google Scholar 

  • Yan K, Chen P, Shao HB, Shao CY, Zhao SJ, Brestic M (2013a) Dissection of photosynthetic electron transport process in sweet sorghum under heat stress. PLoS One 8:e62100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan K, Chen P, Shao HB, Zhao SJ (2013b) Characterization of photosynthetic electron transport chain in bioenergy crop Jerusalem artichoke (Helianthus tuberosus L.) under heat stress for sustainable cultivation. Ind Crop Prod 50:809–815

    Article  CAS  Google Scholar 

  • Yan K, Shao HB, Shao CY, Chen P, Zhao SJ, Brestic M, Chen XB (2013c) Physiological adaptive mechanisms of plants grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiol Plant 35:2867–2878

    Article  CAS  Google Scholar 

  • Yan K, Wu CW, Zhang LH, Chen XB (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front Plant Sci 6:227

    PubMed Central  PubMed  Google Scholar 

  • Yang XH, Liang Z, Wen XG, Lu CM (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhang ZS, Gao HY, Fan XL, Liu MJ, Li XD (2014) The mechanism by which NaCl treatment alleviates PSI photoinhibition under chilling-light treatment. J Photochem Photobiol B 140:286–291

    Article  CAS  PubMed  Google Scholar 

  • Yazici I, Tuerkan I, Sekmen AH, Demiral T (2007) Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation. Environ Exp Bot 61:49–57

    Article  CAS  Google Scholar 

  • Zhang SP, Scheller HV (2004) Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol 45:1595–1602

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZS, Jia YJ, Gao HY, Zhang LT, Li HD, Meng QW (2011) Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta 234:883–889

    Article  CAS  PubMed  Google Scholar 

  • Zhang LT, Zhang ZS, Gao HY, Xue ZC, Yang C, Meng XL, Meng QW (2012) Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. Physiol Plant 143:396–407

    Article  Google Scholar 

  • Zhang ZS, Yang C, Gao HY, Zhang LT, Fan XL, Liu MJ (2014) The higher sensitivity of PSI to ROS results in lower chilling-light tolerance of photosystems in young leaves of cucumber. J Photochem Photobiol B 137:127–134

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang XH, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Kalaji MH, Govindjee (2014) Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth Res 119:339–354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (41201292) and the Special Project of Commonweal Vocation (Ocean, 201105020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Yan or Xiaobing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Zhao, S., Liu, Z. et al. Salt pretreatment alleviated salt-induced photoinhibition in sweet sorghum. Theor. Exp. Plant Physiol. 27, 119–129 (2015). https://doi.org/10.1007/s40626-015-0038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40626-015-0038-2

Keywords

Navigation