Skip to main content
Log in

Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photosynthetic responses of wheat (Triticum aestivum L.) leaves to different levels of drought stress were analyzed in potted plants cultivated in growth chamber under moderate light. Low-to-medium drought stress was induced by limiting irrigation, maintaining 20 % of soil water holding capacity for 14 days followed by 3 days without water supply to induce severe stress. Measurements of CO2 exchange and photosystem II (PSII) yield (by chlorophyll fluorescence) were followed by simultaneous measurements of yield of PSI (by P700 absorbance changes) and that of PSII. Drought stress gradually decreased PSII electron transport, but the capacity for nonphotochemical quenching increased more slowly until there was a large decrease in leaf relative water content (where the photosynthetic rate had decreased by half or more). We identified a substantial part of PSII electron transport, which was not used by carbon assimilation or by photorespiration, which clearly indicates activities of alternative electron sinks. Decreasing the fraction of light absorbed by PSII and increasing the fraction absorbed by PSI with increasing drought stress (rather than assuming equal absorption by the two photosystems) support a proposed function of PSI cyclic electron flow to generate a proton-motive force to activate nonphotochemical dissipation of energy, and it is consistent with the observed accumulation of oxidized P700 which causes a decrease in PSI electron acceptors. Our results support the roles of alternative electron sinks (either from PSII or PSI) and cyclic electron flow in photoprotection of PSII and PSI in drought stress conditions. In future studies on plant stress, analyses of the partitioning of absorbed energy between photosystems are needed for interpreting flux through linear electron flow, PSI cyclic electron flow, along with alternative electron sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( A_{{{\text{CO}}_{ 2} }} \) :

CO2 assimilation rate

Cyt b6/f :

Cytochrome b6/f

g m :

Mesophyll conductance

g s :

Stomatal conductance

LED:

Light emitting diode

LHC:

Light harvesting complex

NPQ:

Nonphotochemical quenching

P700:

Primary electron donor of PSI (reduced form)

P700+ :

Primary electron donor of PSI (oxidized form)

PAR:

Photosynthetic active radiation

PQ:

Plastoquinone

PSI:

Photosystem I

PSII:

Photosystem II

Q A :

Primary PSII acceptor

qE:

pH-dependent energy dissipation

RuBP:

Ribulose 1,5-bisphosphate

RWC:

Relative water content

ΔpH:

Transthylakoid pH gradient

Ψ W :

Water potential

References

  • Aluru MR, Rodermel SR (2004) Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant 120:4–11

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    PubMed  CAS  Google Scholar 

  • Balaguer L, Punaire FI, Martínez-Ferri E, Armas C, Valladares F, Manrique E (2002) Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. Plant Soil 240:343–352

    CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plant of diverse origins. Planta 170:489–504

    Google Scholar 

  • Björkman O, Powles SB (1984) Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta 161:490–504

    Google Scholar 

  • Bonjean AP, Angus WJ (2001) The world wheat book—a history of wheat breeding. Lavoisier Publishing, Paris

    Google Scholar 

  • Brestic M, Cornic G, Fryer MJ, Baker NR (1995) Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress? Planta 196:450–457

    CAS  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Repkova J (2008) Functional study of PS II and PSI energy use and dissipation mechanisms in barley wild type and chlorina mutants under high light conditions. In: Allen JF, Gantt E, Goldbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th International congress on photosynthesis, Springer, Dordrecht, pp 1407–1411

  • Brestic M, Zivcak M, Kalaji HM, Allakhverdiev SI, Carpentier R (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    PubMed  CAS  Google Scholar 

  • Buermann W, Lintner BR, Koven CD, Angert A, Pinzon JE, Tucker CJ et al (2007) The changing carbon cycle at Mauna Loa Observatory. Proc Natl Acad Sci USA 104:4249–4254

    PubMed  CAS  Google Scholar 

  • Cardol P, Bailleul B, Rappaport F, Derelle E, Béal D, Breyton C, Bailey S, Wollman FA, Grossman A, Moreau H, Finazzi G (2008) An original adaptation of photosynthesis in the marine green alga Ostreococcus. Proc Natl Acad Sci USA 105:7881–7886

    PubMed  CAS  Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    CAS  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    PubMed  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    PubMed  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    PubMed  CAS  Google Scholar 

  • Chen YE, Zhang ZI, Zhang HY, Zeng YX, Yuan S (2013) The significance of CP29 reversible phosphorylation in thylakoids of higher plants under environmental stresses. J Exp Bot 64:1167–1178

    PubMed  CAS  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    PubMed  CAS  Google Scholar 

  • Clarke JE, Johnson GN (2001) In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta 212:808–816

    PubMed  CAS  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse E-M, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplasts of photosystem I-deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    PubMed  CAS  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    CAS  Google Scholar 

  • Diaz M, De Haro V, Munoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ 30:1578–1585

    PubMed  CAS  Google Scholar 

  • Dietzel L, Bräutigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry–functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088

    PubMed  CAS  Google Scholar 

  • Eichelmann H, Laisk A (2000) Cooperation of photosystems II and I in leaves as analysed by simultaneous measurements of chlorophyll fluorescence and transmittance at 800 nm. Plant Cell Physiol 41:138–147

    PubMed  CAS  Google Scholar 

  • Eichelmann H, Oja V, Peterson RB, Laisk A (2011) The rate of nitrite reduction in leaves as indicated by O2 and CO2 exchange during photosynthesis. J Exp Bot 62:2205–2215

    PubMed  CAS  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL et al (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82

    PubMed  CAS  Google Scholar 

  • Epron D, Godard G, Cornic G, Genty B (1995) Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica and Castanea sativa Mill.). Plant Cell Environ 18:43–51

    Google Scholar 

  • Flexas J, Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol 29:1209–1215

    CAS  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    PubMed  CAS  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A et al (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84

    PubMed  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    PubMed  CAS  Google Scholar 

  • Fristedt R, Vener AV (2011) High light induced disassembly of photosystem II supercomplexes in Arabidopsis requires STN7-dependent phosphorylation of CP29. PLoS ONE 6:e24565

  • Galmes J, Medrano H, Jaume F (2006) Acclimation of Rubisco specificity factor to drought in tobacco: discrepancies between in vitro and in vivo estimations. J Exp Bot 57:3659–3667

    PubMed  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Golding AJ, Johnson GN (2003) Down-regulation of linear and activation of cyclic electron transport during drought. Planta 218:107–114

    PubMed  CAS  Google Scholar 

  • Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants: evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 202:356–363

    Google Scholar 

  • Goltsev V, Zaharieva I, Chernev P, Kouzmanova M, Kalaji MH, Yordanov I, Krasteva V, Alexandrov V, Stefanov D, Allakhverdiev SI, Strasser RJ (2012) Drought-induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation. Biochim Biophys Acta 1817:1490–1498

    PubMed  CAS  Google Scholar 

  • Gray GR, Savitch LV, Ivanov AC, Huner NPA (1996) Photosystem II excitation pressure and development of resistance to photoinhibition. 2. Adjustment of photosynthetic capacity in winter wheat and winter rye. Plant Physiol 110:61–71

    PubMed  CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    PubMed  CAS  Google Scholar 

  • Härtel H, Lokstein H (1995) Relationship between quenching of maximum and dark-level chlorophyll fluorescence in vivo: dependence on photosystem II antenna size. Biochim Biophys Acta 1228:91–94

    Google Scholar 

  • Heber U, Walker D (1992) Concerning a dual function of coupled cyclic electron-transport in leaves. Plant Physiol 100:1621–1626

    PubMed  CAS  Google Scholar 

  • Holaday AS, Martindale W, Alred R, Brooks AL, Leegood RC (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 98:1105–1114

    PubMed  CAS  Google Scholar 

  • Huang W, Zhang SB, Cao KF (2010) Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII. Plant Cell Physiol 51:1922–1928

    PubMed  CAS  Google Scholar 

  • Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta 235:819–828

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Sane PV, Hurry V, Öquist G, Huner NPA (2008) Photosystem II reaction center quenching: mechanisms and physiological role. Photosynth Res 98:565–574

    PubMed  CAS  Google Scholar 

  • Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G et al (2012) Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynth Res 113:191–206

    PubMed  CAS  Google Scholar 

  • Joët T, Genty B, Josse E-M, Kuntz M, Cournac L, Peltier G (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277:31623–31630

    PubMed  Google Scholar 

  • Johnson GN (2005) Cyclic electron transport in C3 plants: fact or artefact? J Exp Bot 56:407–416

    PubMed  CAS  Google Scholar 

  • Johnson GN (2011) Physiology of PSI cyclic electron transport in higher plants. Biochim Biophys Acta 1807:384–389

    PubMed  CAS  Google Scholar 

  • Josse E-M, Alcaraz J-P, Labouré A-M, Kuntz M (2003) In vitro characterization of a plastid terminal oxidase (PTOX). Eur J Biochem 270:3787–3794

    PubMed  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115

    PubMed  CAS  Google Scholar 

  • Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192:261–268

    CAS  Google Scholar 

  • Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, Yokota A, Kramer DM (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32:209–219

    PubMed  CAS  Google Scholar 

  • Kozaki A, Takeba G (1996) Photorespiration protects C3 plants from photooxidation. Nature 384:557–560

    CAS  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187

    CAS  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    PubMed  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    PubMed  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Ann Rev Plant Physiol Plant Mol Biol 42:313–349

    CAS  Google Scholar 

  • Laisk A, Loreto F (1996) Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence: ribulose-1,5-bisphosphate carboxylase oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiol 110:903–912

    PubMed  CAS  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48:1575–1588

    PubMed  CAS  Google Scholar 

  • Laisk A, Talts E, Oja V, Eichelmann H, Peterson R (2010) Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway? Photosynth Res 103:79–95

    PubMed  CAS  Google Scholar 

  • Lal A, Ku MSB, Edwards GE (1996) Analysis of inhibition of photosynthesis due to water-stress in the C3 species Hordeum vulgare and Vicia faba—electron-transport, CO2 fixation and carboxylation capacity. Photosynth Res 49:57–69

    CAS  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    PubMed  CAS  Google Scholar 

  • Lehtimäki N, Lintala M, Allahverdiyeva Y, Aro EM, Mulo P (2010) Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer. J Plant Physiol 167:1018–1022

    PubMed  Google Scholar 

  • Li XP, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    PubMed  CAS  Google Scholar 

  • Liu WJ, Chen YE, Tian WJ, Du JB, Zhang ZW, Xu F, Zhang F, Yuan S, Lin HH (2009) Dephosphorylation of photosystem II proteins and phosphorylation of CP29 in barley photosynthetic membranes as a response to water stress. Biochim Biophys Acta 1787:1238–1245

    PubMed  CAS  Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NADPH dehydrogenase complex. Plant Cell 22:221–233

    PubMed  CAS  Google Scholar 

  • Maroco JP, Rodrigues ML, Lopes C, Chaves MM (2002) Limitations to leaf photosynthesis in grapevine under drought: metabolic and modelling approaches. Funct Plant Biol 29:1–9

    Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta Bioenerg 1807:22–29

    CAS  Google Scholar 

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807:954–967

    PubMed  CAS  Google Scholar 

  • Mehta P, Allakhverdiev SI, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255

    PubMed  CAS  Google Scholar 

  • Miyake C (2010) Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant Cell Physiol 51:1951–1963

    PubMed  CAS  Google Scholar 

  • Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    PubMed  CAS  Google Scholar 

  • Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371

    PubMed  CAS  Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429:579–582

    PubMed  CAS  Google Scholar 

  • Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    PubMed  CAS  Google Scholar 

  • Ogren WL (1984) Photorespiration: pathways, regulation, and modification. Annu Rev Plant Physiol 35:415–442

    CAS  Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    PubMed  CAS  Google Scholar 

  • Ortiz-Lopez A, Ort DR, Boyer JS (1991) Photophosphorylation in attached leaves of Helianthus annuus at low water potentials. Plant Physiol 96:1018–1025

    PubMed  CAS  Google Scholar 

  • Parry M, Andraloje PJ, Khan S, Lea PJ, Keys A (2002) Rubisco activity: effect of drought stress. Ann Bot 89:833–839

    PubMed  CAS  Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    PubMed  CAS  Google Scholar 

  • Pfundel EE (1998) Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    PubMed  CAS  Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368

    PubMed  CAS  Google Scholar 

  • Savitch LV, Ivanov AG, Krol M, Sprott DP, Öquist G, Huner NPA (2010) Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent. Plant Cell Physiol 51:1555–1570

    PubMed  CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high frequency modulated chlorophyll fluorescence. Photosynth Res 9:261–272

    CAS  Google Scholar 

  • Schreiber U, Bilger W, Klughammer C, Neubauer C (1988) Application of the PAM fluorometer in stress detection. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 151–155

    Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    CAS  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis thaliana and the halophyte Tellungiella halophila. Role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149:1154–1165

    PubMed  CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    CAS  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro EM (2006) State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–79371

    PubMed  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366

    Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    CAS  Google Scholar 

  • Van den Berg M, Driessen PM, Rabbinge R (2002) Water uptake in crop growth models for land use systems analysis: II. Comparison of three simple approaches. Ecol Model 148:233–250

    Google Scholar 

  • Vassileva V, Demirevska K, Simova-Stoilova L, Petrova T, Tsenov N, Feller U (2012) Long-term field drought affects leaf protein pattern and chloroplast ultrastructure of winter wheat in a cultivar-specific manner. J Agron Crop Sci 198:104–117

    Google Scholar 

  • Walters R, Horton GP (1991) Resolution of components of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth Res 27:121–133

    CAS  Google Scholar 

  • Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Leegood RC (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373

    CAS  Google Scholar 

  • Yamori W, Sakata N, Suzuki Y, Shikanai T, Makino A (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J 68:966–976

    PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van der Putten PEL, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464

    PubMed  CAS  Google Scholar 

  • Yuan S, Liu WJ, Zhang NH, Wang MB, Liang HG, Lin HH (2005) Effects of water stress on major PSII gene expression and protein metabolism in barley leaves. Physiol Plant 125:464–473

    CAS  Google Scholar 

  • Zadraznik T, Hollung K, Egge-Jacobsen W, Meglic V, Sustar-Vozlic J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272

    PubMed  CAS  Google Scholar 

  • Zivcak M, Brestic M, Olsovska K, Slamka P (2008) Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ 54:133–139

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr Richard J. Ladle (School of Geography and the Environment, Oxford University, UK, and Institute of Biological and Health Sciences, Federal University of Alagoas, Praça Afrânio Jorge, s/n, Prado, Maceió, AL, Brazil) for reviewing and improving the English of the manuscript. The research described here has been supported by grant APVV-0197-10 and APVV-0661-10. This study was also supported by grants from the Russian Foundation for Basic Research and Molecular and Cell Biology Programs of the Russian Academy of Sciences to SIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Brestic.

Additional information

See Table 1 for other symbols representing chlorophyll fluorescence and P700 parameters apart from the abbreviations listed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zivcak, M., Brestic, M., Balatova, Z. et al. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117, 529–546 (2013). https://doi.org/10.1007/s11120-013-9885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9885-3

Keywords

Navigation