Skip to main content
Log in

Private Wells and Rural Health: Groundwater Contaminants of Emerging Concern

  • Water and Health (T Wade, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Approximately 12% of the population in the US and Canada rely on federally unregulated private wells, which are common in rural areas and may be susceptible to microbiological and chemical contamination. This review identifies and summarizes recent findings on contaminants of emerging concern in well water across the US and Canada.

Recent Findings

Private well water quality modeling is complicated by the substantial variability in contamination sources, well construction, well depth, and the hydrogeology of the environment surrounding the well. Temporal variation in contaminant levels in wells suggests the need for monitoring efforts with greater spatial and temporal coverage.

Summary

More extensive private well monitoring will help identify wells at greater risk of contamination, and in turn, public health efforts can focus on education and outreach to improve monitoring, maintaining, and treating private wells in these communities. Community interventions need to be coupled with stricter regulations and financing mechanisms that can support and protect private well owners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Johnson TD, Belitz K. Domestic well locations and populations served in the contiguous U.S.: datasets for decadal years 2000 and 2010. US Geol Surv data release 2019. https://doi.org/10.5066/P9FSLU3B.

  2. • Johnson TD, Belitz K, Lombard MA. Estimating domestic well locations and populations served in the contiguous U.S. for years 2000 and 2010. Sci Total Environ. 2019;687:1261–73. https://doi.org/10.5066/P9FSLU3B. This paper presents a method to estimate the number and locations of households relying on private wells in the US.

    Article  CAS  PubMed  Google Scholar 

  3. Maupin MA, Kenny JF, Hutson SS, Lovelace JK, Barber NL, Linsey KS. Estimated use of water in the United States in 2010. U.S. Geol Surv Circ. 2014;1405. https://doi.org/10.3133/cir1405.

  4. • Murphy HM, Thomas MK, Schmidt PJ, Medeiros DT, McFadyen S, Pintar KDM. Estimating the burden of acute gastrointestinal illness due to Giardia, Cryptosporidium, Campylobacter, E. coli O157 and norovirus associated with private wells and small water systems in Canada. Epidemiol Infect. 2016;144:1355–70. https://doi.org/10.1017/S0950268815002071. Estimates the burden of AGI attributed to drinking water from private and small community water systems in Canada.

    Article  CAS  PubMed  Google Scholar 

  5. Swistock BR, Clemens S, Sharpe WE, Rummel S. Water quality and management of private drinking water wells in Pennsylvania. J Environ Health. 2013;75:60–7.

    CAS  PubMed  Google Scholar 

  6. Malecki KMC, Schultz AA, Severtson DJ, Anderson HA, VanDerslice JA. Private-well stewardship among a general population based sample of private well-owners. Sci Total Environ. 2017;601–602:1533–43. https://doi.org/10.1016/j.scitotenv.2017.05.284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waller RM. Ground water and the rural homeowner. Gen Interes Publ. 1994. https://doi.org/10.3133/7000054.

  8. Hynds P, Misstear BD, Gill LW, Murphy HM. Groundwater source contamination mechanisms: physicochemical profile clustering, risk factor analysis and multivariate modelling. J Contam Hydrol. 2014;159:47–56. https://doi.org/10.1016/j.jconhyd.2014.02.001.

    Article  CAS  PubMed  Google Scholar 

  9. Swistock BR, Sharpe WE. The influence of well construction on bacterial contamination of private water wells in Pennsylvania. J Environ Health. 2005;68:17–22.

    PubMed  Google Scholar 

  10. Borchardt MA, Bradbury KR, Gotkowitz MB, Cherry JA, Parker BL. Human enteric viruses in groundwater from a confined bedrock aquifer. Environ Sci Technol. 2007;41:6606–12. https://doi.org/10.1021/es071110+.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Kelly WR, Panno SV, Liu W-T. Tracing fecal pollution sources in karst groundwater by Bacteroidales genetic biomarkers, bacterial indicators, and environmental variables. Sci Total Environ. 2014;490:1082–90. https://doi.org/10.1016/j.scitotenv.2014.05.086.

    Article  CAS  PubMed  Google Scholar 

  12. Gotkowitz MB, Bradbury KR, Borchardt MA, Zhu J, Spencer SK. Effects of climate and sewer condition on virus transport to groundwater. Environ Sci Technol. 2016;50:8497–504. https://doi.org/10.1021/acs.est.6b01422.

    Article  CAS  PubMed  Google Scholar 

  13. Bradbury KR, Borchardt MA, Gotkowitz M, Spencer SK, Zhu J, Hunt RJ. Source and transport of human enteric viruses in deep municipal water supply wells. Environ Sci Technol. 2013;47:4096–103. https://doi.org/10.1021/es400509b.

    Article  CAS  PubMed  Google Scholar 

  14. Schaider LA, Ackerman JM, Rudel RA. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer. Sci Total Environ. 2016;547:470–81. https://doi.org/10.1186/s12940-018-0442-6.

    Article  CAS  PubMed  Google Scholar 

  15. • Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, et al. Detection of poly- and perfluoroalkyl substances (PFASs) in U.S. drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3:344–50. https://doi.org/10.1021/acs.estlett.6b00260. This paper uses a national dataset of PFAS in drinking water systems to analyze potential sources of PFAS at the national-scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Atwill ER, Antaki E, Applegate O, Bergameschi B, Bond RF, et al. Fecal indicator and pathogenic bacteria and their antibiotic resistance in alluvial groundwater of an irrigated agricultural region with dairies. J Environ Qual. 2015;44:1435–47. https://doi.org/10.2134/jeq2015.03.0139.

    Article  CAS  PubMed  Google Scholar 

  17. Blaschke AP, Derx J, Zessner M, Kirnbauer R, Kavka G, Strelec H, et al. Setback distances between small biological wastewater treatment systems and drinking water wells against virus contamination in alluvial aquifers. Sci Total Environ. 2016;573:278–89. https://doi.org/10.1016/j.scitotenv.2016.08.075.

    Article  CAS  PubMed  Google Scholar 

  18. Borchardt MA, Bradbury KR, Alexander EC Jr, Kolberg RJ, Alexander SC, Archer JR, et al. Norovirus outbreak caused by a new septic system in a dolomite aquifer. Groundwater. 2011;49:85–97. https://doi.org/10.1111/j.1745-6584.2010.00686.x.

    Article  CAS  Google Scholar 

  19. White WB, Herman JS, Herman EK, Rutigliano M. Contaminated groundwater in karst: why is it an issue? An introduction to the KWI San Juan Conference. Karst Groundw Contam Public Heal. 2018. https://doi.org/10.1007/978-3-319-51070-5_1.

    Google Scholar 

  20. Hynds PD, Thomas MK, Pintar KDM. Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: a review and pooled-analysis. PLoS One. 2014;9:e93301. https://doi.org/10.1371/journal.pone.0093301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hunt RJ, Borchardt MA, Bradbury KR. Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers. Groundwater. 2014;52:187–93. https://doi.org/10.1111/gwat.12158.

    Article  CAS  Google Scholar 

  22. Borchardt MA, Spencer SK, Kieke BA Jr, Lambertini E, Loge FJ. Viruses in nondisinfected drinking water from municipal wells and community incidence of acute gastrointestinal illness. Environ Health Perspect. 2012;120:1272–9. https://doi.org/10.1289/ehp.1104499.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lindsey BD, Rasberry JS, Zimmerman TM. Microbiological quality of water from noncommunity supply wells in carbonate and crystalline aquifers of Pennsylvania. Water-Resources Investig Rep. 2002. https://doi.org/10.3133/wri014268.

  24. Abbaszadegan M, LeChevallier M, Gerba C. Occurrence of viruses in US groundwaters. J AWWA. 2003;95:107–20. https://doi.org/10.1002/j.1551-8833.2003.tb10458.x.

    Article  CAS  Google Scholar 

  25. • Stokdyk JP, Spencer SK, Walsh JF, de Lambert JR, Firnstahl AD, Anderson AC, et al. Cryptosporidium incidence and surface water influence of groundwater supplying public water systems in Minnesota, USA. Environ Sci Technol. 2019;53:3391–8. https://doi.org/10.1021/acs.est.8b05446. The authors challenge the notion thatCryptosporidiumis largely a surface water contaminant by demonstrating thatCryptosporidiumis detected in groundwater and that it is detected in groundwater not under the influence of surface water.

    Article  CAS  PubMed  Google Scholar 

  26. Robertson LJ, Campbell AT, Smith HV. Survival of Cryptosporidium parvum oocysts under various environmental pressures. Appl Environ Microbiol. 1992;58:3494–500.

    Article  CAS  Google Scholar 

  27. King BJ, Monis PT. Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology. 2007;134:309–23. https://doi.org/10.1017/S0031182006001491.

    Article  CAS  PubMed  Google Scholar 

  28. Won G, Gill A, LeJeune JT. Microbial quality and bacteria pathogens in private wells used for drinking water in northeastern Ohio. J Water Health. 2013;11:555–62. https://doi.org/10.2166/wh.2013.247.

    Article  PubMed  Google Scholar 

  29. Hruby CE, Libra RD, Fields CL, Kolpin DW, Hubbard LE, Borchardt MR, et al. 2013 Survey of Iowa groundwater and evaluation of public well vulnerability classifications for contaminants of emerging concern. Iowa Geol Water Surv Tech Inf Ser. 2015;57. https://doi.org/10.13140/RG.2.1.3926.4085

  30. • Fout GS, Borchardt MA, Kieke BA Jr, Karim MR. Human virus and microbial indicator occurrence in public-supply groundwater systems: meta-analysis of 12 international studies. Hydrogeol J. 2017;25:903–19. https://doi.org/10.1007/s10040-017-1581-5. Groundwater studies are often at the local-scale but this meta-analysis investigates correlations between indicator organisms and viruses in groundwater using international studies of public drinking water.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dai D, Rhoads WJ, Katner A, Strom L, Edwards MA, Pruden A, et al. Molecular survey of Legionella and Naegleria fowleri in private well water and premise plumbing following the 2016 Louisiana flood. Environ Sci Water Res Technol. 2019(5):1464–77. https://doi.org/10.1039/C9EW00109C.

    CAS  Google Scholar 

  32. Benedict KM, Reses H, Vigar M, Roth DM, Roberts VA, Mattioli M, et al. Surveillance for waterborne disease outbreaks associated with drinking water—United States, 2013–2014. MMWR Morb Mortal Wkly Rep. 2017;66:1216. https://doi.org/10.15585/mmwr.mm6644a3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. van Heijnsbergen E, Schalk JAC, Euser SM, Brandsema PS, den Boer JW, de Roda Husman AM. Confirmed and potential sources of Legionella reviewed. Environ Sci Technol. 2015;49:4797–815. https://doi.org/10.1021/acs.est.5b00142.

    Article  CAS  PubMed  Google Scholar 

  34. McBurnett LR, Holt NT, Alum A, Abbaszadegan M. Legionella - a threat to groundwater: pathogen transport in recharge basin. Sci Total Environ. 2018;621:1485–90. https://doi.org/10.1016/j.scitotenv.2017.10.080.

    Article  CAS  PubMed  Google Scholar 

  35. Hunt RJ, Johnson WP. Pathogen transport in groundwater systems: contrasts with traditional solute transport. Hydrogeol J. 2017;25:921–30. https://doi.org/10.1007/s10040-016-1502-z.

    Article  Google Scholar 

  36. Allen AS, Borchardt MA, Kieke BA, Dunfield KE, Parker BL. Virus occurrence in private and public wells in a fractured dolostone aquifer in Canada. Hydrogeol J. 2017;25:1117–36. https://doi.org/10.1007/s10040-017-1557-5.

    Article  CAS  Google Scholar 

  37. Zhang W, Tang X, Weisbrod N, Guan Z. A review of colloid transport in fractured rocks. J Mt Sci. 2012;9:770–87. https://doi.org/10.1007/s11629-012-2443-1.

    Article  Google Scholar 

  38. Coleman BL, Louie M, Salvadori MI, McEwen SA, Neumann N, Sibley K, et al. Contamination of Canadian private drinking water sources with antimicrobial resistant Escherichia coli. Water Res. 2013;47:3026–36. https://doi.org/10.1016/j.watres.2013.03.008.

    Article  CAS  PubMed  Google Scholar 

  39. Sanderson H, Fricker C, Brown RS, Majury A, Liss SN. Antibiotic resistance genes as an emerging environmental contaminant. Environ Rev. 2016;24:205–18. https://doi.org/10.1139/er-2015-0069.

    Article  Google Scholar 

  40. Wallender EK, Ailes EC, Yoder JS, Roberts VA, Brunkard JM. Contributing factors to disease outbreaks associated with untreated groundwater. Groundwater. 2014;52:886–97. https://doi.org/10.1111/gwat.12121.

    Article  CAS  Google Scholar 

  41. Pons W, Young I, Truong J, Jones-Bitton A, McEwen S, Pintar K, et al. A systematic review of waterborne disease outbreaks associated with small non-community drinking water Systems in Canada and the United States. PLoS One. 2015;10:e0141646. https://doi.org/10.1371/journal.pone.0141646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy HM, Prioleau MD, Borchardt MA, Hynds PD. Review: epidemiological evidence of groundwater contribution to global enteric disease, 1948–2015. Hydrogeol J. 2017;25:981–1001. https://doi.org/10.1007/s10040-017-1543-y.

    Article  Google Scholar 

  43. Denno DM, Keene WE, Hutter CM, Koepsell JK, Patnode M, Flodin-Hursh D, et al. Tri-county comprehensive assessment of risk factors for sporadic reportable bacterial enteric infection in children. J Infect Dis. 2009;199:467–76. https://doi.org/10.1086/596555.

    Article  PubMed  PubMed Central  Google Scholar 

  44. DeFelice NB, Johnston JE, Gibson JM. Reducing emergency department visits for acute gastrointestinal illnesses in North Carolina (USA) by extending community water service. Environ Health Perspect. 2016;124:1583–91. https://doi.org/10.1289/EHP160.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Murray RT, Rosenberg Goldstein RE, Maring EF, Pee DG, Aspinwall K, Wilson SM, et al. Prevalence of microbiological and chemical contaminants in private drinking water wells in Maryland, USA. Int J Environ Res Public Health. 2018;15:1686. https://doi.org/10.3390/ijerph15081686.

    Article  CAS  PubMed Central  Google Scholar 

  46. Fewtrell L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ Health Perspect. 2004;112:1371–4. https://doi.org/10.1289/ehp.7216.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Ward MH, Jones RR, Brender JD, de Kok TM, Weyer PJ, Nolan BT, et al. Drinking water nitrate and human health: an updated review. Int J Environ Res Public Health. 2018;15:1557. https://doi.org/10.3390/ijerph15071557. The authors note that recent evidence suggests that many adverse health outcomes are associated with nitrate levels below regulatory limits for drinking water.

    Article  CAS  PubMed Central  Google Scholar 

  48. Pennino MJ, Compton JE, Leibowitz SG. Trends in drinking water nitrate violations across the United States. Environ Sci Technol. 2017;51:13450–60. https://doi.org/10.1021/acs.est.7b04269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wheeler DC, Nolan BT, Flory AR, DellaValle CT, Ward MH. Modeling groundwater nitrate concentrations in private wells in Iowa. Sci Total Environ. 2015;536:481–8. https://doi.org/10.1016/j.scitotenv.2015.07.080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arnade LJ. Seasonal correlation of well contamination and septic tank distance. Groundwater. 1999;37:920–3. https://doi.org/10.1111/j.1745-6584.1999.tb01191.x.

    Article  CAS  Google Scholar 

  51. Messier KP, Kane E, Bolich R, Serre ML. Nitrate variability in groundwater of North Carolina using monitoring and private well data models. Environ Sci Technol. 2014;48:10804–12. https://doi.org/10.1021/es502725f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lanphear BP, Hornung R, Khoury J, Yolton K, Baghurst P, Bellinger DC, et al. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect. 2005;113:894–9. https://doi.org/10.1289/ehp.7688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lanphear BP, Rauch S, Auinger P, Allen RW, Hornung RW. Low-level lead exposure and mortality in US adults: a population-based cohort study. Lancet Public Heal. 2018;3:e177–84. https://doi.org/10.1016/S2468-2667(18)30025-2.

    Article  Google Scholar 

  54. Schober SE, Mirel LB, Graubard BI, Brody DJ, Flegal KM. Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect. 2006;114:1538–41. https://doi.org/10.1289/ehp.9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. • Jurgens BC, Parkhurst DL, Belitz K. Assessing the lead solubility potential of untreated groundwater of the United States. Environ Sci Technol. 2019;53:3095–103. https://doi.org/10.1021/acs.est.8b04475. The authors model lead solubility potential across the US to identify regions that may be more susceptible to lead contamination in untreated groundwater.

    Article  CAS  PubMed  Google Scholar 

  56. Ng D-Q, Strathmann TJ, Lin Y-P. Role of orthophosphate as a corrosion inhibitor in chloraminated solutions containing tetravalent lead corrosion product PbO2. Environ Sci Technol. 2012;46:11062–9. https://doi.org/10.1021/es302220t.

    Article  CAS  PubMed  Google Scholar 

  57. Belitz K, Jurgens BC, Johnson TD. Potential corrosivity of untreated groundwater in the United States. Sci Investig Rep. 2016. https://doi.org/10.3133/sir20165092.

  58. Kennedy GW. Potential corrosivity of groundwater in Nova Scotia and its association with lead in private well water. Nova Scotia Energy Mines. 2019. https://novascotia.ca/natr/meb/data/pubs/19ofr02/ofr_me_2019-002.pdf. Accessed 2 Nov 2019.

  59. Pieper KJ, Krometis L-AH, Benham BL, Gallagher DL. Simultaneous influence of geology and system design on drinking water quality in private systems. J Environ Health. 2016;79:E1–9.

    Google Scholar 

  60. Pieper KJ, Krometis L-AH, Gallagher DL, Benham BL, Edwards M. Incidence of waterborne lead in private drinking water systems in Virginia. J Water Health. 2015;13:897–908. https://doi.org/10.2166/wh.2015.275.

    Article  PubMed  Google Scholar 

  61. Houtz EF, Higgins CP, Field JA, Sedlak DL. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ Sci Technol. 2013;47:8187–95. https://doi.org/10.1021/es4018877.

    Article  CAS  PubMed  Google Scholar 

  62. Rahman MF, Peldszus S, Anderson WB. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Res. 2014;50:318–40. https://doi.org/10.1016/j.watres.2013.10.045.

    Article  CAS  PubMed  Google Scholar 

  63. Eschauzier C, Beerendonk E, Scholte-Veenendaal P, De Voogt P. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. Environ Sci Technol. 2012;46:1708–15. https://doi.org/10.1021/es201662b.

    Article  CAS  PubMed  Google Scholar 

  64. Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121:1313–8. https://doi.org/10.1289/ehp.1306615.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Steenland K, Kugathasan S, Barr DB. PFOA and ulcerative colitis. Environ Res. 2018;165:317–21. https://doi.org/10.1016/j.envres.2018.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010;118:197–202. https://doi.org/10.1289/ehp.0901165.

    Article  CAS  PubMed  Google Scholar 

  67. Ballesteros V, Costa O, Iñiguez C, Fletcher T, Ballester F, Lopez-Espinosa M-J. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: a systematic review of epidemiologic studies. Environ Int. 2017;99:15–28. https://doi.org/10.1016/j.envint.2016.10.015.

    Article  CAS  PubMed  Google Scholar 

  68. • Guelfo JL, Adamson DT. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in U.S. drinking water. Environ Pollut. 2018;236:505–13. https://doi.org/10.1016/j.envpol.2018.01.066. Provides insights into PFAS occurrence and persistence in drinking water from various water systems at the national-scale.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hoffman K, Webster TF, Bartell SM, Weisskopf MG, Fletcher T, Vieira VM. Private drinking water wells as a source of exposure to perfluorooctanoic acid (PFOA) in communities surrounding a fluoropolymer production facility. Environ Health Perspect. 2011;119:92–7. https://doi.org/10.1289/ehp.1002503.

    Article  CAS  PubMed  Google Scholar 

  70. Lindstrom AB, Strynar MJ, Delinsky AD, Nakayama SF, McMillan L, Libelo EL, et al. Application of WWTP biosolids and resulting perfluorinated compound contamination of surface and well water in Decatur, Alabama, USA. Environ Sci Technol. 2011;45:8015–21. https://doi.org/10.1021/es1039425.

    Article  CAS  PubMed  Google Scholar 

  71. Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect. 2015;123:412–21. https://doi.org/10.1289/ehp.1307894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, et al. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med. 2013;159:649–59. https://doi.org/10.7326/0003-4819-159-10-201311190-00719.

    Article  PubMed  PubMed Central  Google Scholar 

  73. • Ayotte JD, Medalie L, Qi SL, Backer LC, Nolan BT. Estimating the high-arsenic domestic-well population in the conterminous United States. Environ Sci Technol. 2017;51:12443–54. https://doi.org/10.1021/acs.est.7b02881. Provides estimates of the number of private well users in the US who may be exposed to high arsenic levels in their drinking water.

    Article  CAS  PubMed  Google Scholar 

  74. DeSimone LA. Quality of water from domestic wells in principal aquifers of the United States, 1991–2004: Overview of major findings. U.S. Geol Surv Circ. 2009;1332. https://doi.org/10.3133/cir1332

  75. Kennedy GW, Drage JM. An arsenic in well water risk map for nova scotia based on observed patterns of well water concentrations of arsenic in bedrock aquifers. Nova Scotia Natural Resources. 2017. https://novascotia.ca/natr/meb/data/pubs/17ofr03/ofr_me_2017-003.pdf. Accessed 2 Nov 2019.

  76. Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH. Arsenic in soil and groundwater: an overview. In: Arsen Soil Groundw. Elsevier; 2007. p. 3–60.

  77. Ayotte JD, Belaval M, Olson SA, Burow KR, Flanagan SM, Hinkle SR, et al. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Sci Total Environ. 2015;505:1370–9. https://doi.org/10.1016/j.scitotenv.2014.02.057.

    Article  CAS  PubMed  Google Scholar 

  78. Levitt JP, Degnan JR, Flanagan SM, Jurgens BC. Arsenic variability and groundwater age in three water supply wells in Southeast New Hampshire. Geosci Front. 2019;10:1669–83. https://doi.org/10.1016/j.gsf.2019.01.002.

    Article  CAS  Google Scholar 

  79. Yang Q, Culbertson CW, Nielsen MG, Schalk CW, Johnson CD, Marvinney RG, et al. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in Central Maine, USA. Sci Total Environ. 2015;505:1291–307. https://doi.org/10.1016/j.scitotenv.2014.04.089.

    Article  CAS  PubMed  Google Scholar 

  80. Degnan JR, Levitt JP, Erickson ML, Jurgens BC, Lindsey BD, Ayotte JD. Time scales of arsenic variability and the role of high-frequency monitoring at three water-supply wells in New Hampshire, USA. Sci Total Environ. 2020;709:135946. https://doi.org/10.1016/j.scitotenv.2019.135946.

    Article  CAS  PubMed  Google Scholar 

  81. Gillispie EC, Austin RE, Rivera NA, Bolich R, Duckworth OW, Bradley P, et al. Soil weathering as an engine for manganese contamination of well water. Environ Sci Technol. 2016;50:9963–71. https://doi.org/10.1021/acs.est.6b01686.

    Article  CAS  PubMed  Google Scholar 

  82. Blanc PD. The early history of manganese and the recognition of its neurotoxicity, 1837–1936. Neurotoxicology. 2018;64:5–11. https://doi.org/10.1016/j.neuro.2017.04.006.

    Article  CAS  PubMed  Google Scholar 

  83. O’Neal SL, Zheng W. Manganese toxicity upon overexposure: a decade in review. Curr Environ Heal Rep. 2015;2:315–28. https://doi.org/10.1007/s40572-015-0056-x.

    Article  CAS  Google Scholar 

  84. Lucchini RG, Aschner M, Landrigan PJ, Cranmer JM. Neurotoxicity of manganese: indications for future research and public health intervention from the manganese 2016 conference. Neurotoxicology. 2018;64:1–4. https://doi.org/10.1016/j.neuro.2018.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bouchard MF, Sauvé S, Barbeau B, Legrand M, Brodeur M-É, Bouffard T, et al. Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspect. 2011;119:138–43. https://doi.org/10.1289/ehp.1002321.

    Article  CAS  PubMed  Google Scholar 

  86. Bouchard MF, Surette C, Cormier P, Foucher D. Low level exposure to manganese from drinking water and cognition in school-age children. Neurotoxicology. 2018;64:110–7. https://doi.org/10.1016/j.neuro.2017.07.024.

    Article  CAS  PubMed  Google Scholar 

  87. McMahon PB, Belitz K, Reddy JE, Johnson TD. Elevated manganese concentrations in United States groundwater, role of land surface–soil–aquifer connections. Environ Sci Technol. 2019;53:29–38. https://doi.org/10.1021/acs.est.8b04055.

    Article  CAS  PubMed  Google Scholar 

  88. • Ying SC, Schaefer MV, Cock-Esteb A, Li J, Fendorf S. Depth stratification leads to distinct zones of manganese and arsenic contaminated groundwater. Environ Sci Technol. 2017;51:8926–32. https://doi.org/10.1021/acs.est.7b01121. Identifies differences in manganese and arsenic detection by well depth and the importance of testing for multiple contaminants when assessing the safety of well water.

    Article  CAS  PubMed  Google Scholar 

  89. Goosen MFA, Sablani SS, Al-Hinai H, Al-Obeidani S, Al-Belushi R, Jackson D. Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep Sci Technol. 2005;39:2261–97. https://doi.org/10.1081/SS-120039343.

    Article  CAS  Google Scholar 

  90. Wait IW, Blatchley ER III. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves. Water Environ Res. 2010;82:2272–8. https://doi.org/10.2175/106143010X12681059116491.

    Article  CAS  PubMed  Google Scholar 

  91. Uejio CK, Christenson M, Moran C, Gorelick M. Drinking-water treatment, climate change, and childhood gastrointestinal illness projections for northern Wisconsin (USA) communities drinking untreated groundwater. Hydrogeol J. 2017;25:969–79. https://doi.org/10.1007/s10040-016-1521-9.

    Article  Google Scholar 

  92. Wick K, Heumesser C, Schmid E. Groundwater nitrate contamination: factors and indicators. J Environ Manag. 2012;111:178–86. https://doi.org/10.1016/j.jenvman.2012.06.030.

    Article  CAS  Google Scholar 

  93. Pili E, Tisserand D, Bureau S. Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks. J Hazard Mater. 2013;262:887–95. https://doi.org/10.1016/j.jhazmat.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  94. Appleman TD, Higgins CP, Quiñones O, Vanderford BJ, Kolstad C, Zeigler-Holady JC, et al. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Res. 2014;51:246–55. https://doi.org/10.1016/j.watres.2013.10.067.

    Article  CAS  PubMed  Google Scholar 

  95. McCleaf P, Englund S, Östlund A, Lindegren K, Wiberg K, Ahrens L. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 2017;120:77–87. https://doi.org/10.1016/j.watres.2017.04.057.

    Article  CAS  PubMed  Google Scholar 

  96. Centers for Disease Control and Prevention. Drinking water treatment technologies for household use. https://www.cdc.gov/healthywater/pdf/drinking/Household_Water_Treatment.pdf. Accessed 8 Nov 2019.

  97. • MacDonald Gibson J, Pieper KJ. Strategies to improve private-well water quality: a North Carolina perspective. Environ Health Perspect. 2017;125:76001. https://doi.org/10.1289/EHP890. Identifies major obstacles to and strategies for improving private well water quality in North Carolina.

    Article  Google Scholar 

  98. Knobeloch L. Use of the behavioral risk factor surveillance survey to assess the safety of private drinking water supplies. 2010. https://www.wri.wisc.edu/wp-content/uploads/FinalWR08R001.pdf. Accessed 18 Oct 2019.

  99. Imgrund K, Kreutzwiser R, de Loë R. Influences on the water testing behaviors of private well owners. J Water Health. 2011;9:241–52. https://doi.org/10.2166/wh.2011.139.

    Article  PubMed  Google Scholar 

  100. Wilson SM, Heaney CD, Cooper J, Wilson O. Built environment issues in unserved and underserved African-American neighborhoods in North Carolina. Environ Justice. 2008;1:63–72. https://doi.org/10.1089/env.2008.0509.

    Article  Google Scholar 

  101. London J, Fencl A, Watterson S, Jarin J, Aranda A, King A, et al. The struggle for water justice in California’s San Joaquin Valley: a focus on disadvantaged unincorporated communities. Davis: UC Davis Center for Regional Change; 2018.

    Google Scholar 

  102. Lichter DT, Parisi D, Crice SM. Municipal underbounding: annexation and racial exclusion in small southern towns. Rural Sociol. 2007;72:47–68. https://doi.org/10.1526/003601107781147437.

    Article  Google Scholar 

  103. Stillo F, MacDonald GJ. Exposure to contaminated drinking water and health disparities in North Carolina. Am J Public Health. 2017;107:180–5. https://doi.org/10.2105/AJPH.2016.303482.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Flanagan SV, Spayd SE, Procopio NA, Marvinney RG, Smith AE, Chillrud SN, et al. Arsenic in private well water part 3 of 3: socioeconomic vulnerability to exposure in Maine and New Jersey. Sci Total Environ. 2016;562:1019–30. https://doi.org/10.1016/j.scitotenv.2016.03.217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zivin JG, Neidell M, Schlenker W. Water quality violations and avoidance behavior: evidence from bottled water consumption. Am Econ Rev. 2011;101:448–53. https://doi.org/10.1257/aer.101.3.448.

    Article  Google Scholar 

  106. • Di Pelino S, Schuster-Wallace C, Hynds PD, Dickson-Anderson SE, Majury A. A coupled-systems framework for reducing health risks associated with private drinking water wells. Can Water Resour J / Rev Can Ressour Hydriques. 2019;44:280–90. https://doi.org/10.1080/07011784.2019.1581663. Describes a conceptual framework that incorporates both the social and physical drivers of the risks of private well water consumption to guide the development of public health interventions for reducing these risks.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Murphy.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Murphy, H.M. Private Wells and Rural Health: Groundwater Contaminants of Emerging Concern. Curr Envir Health Rpt 7, 129–139 (2020). https://doi.org/10.1007/s40572-020-00267-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-020-00267-4

Keywords

Navigation