Skip to main content
Log in

Pathogen transport in groundwater systems: contrasts with traditional solute transport

Transport de pathogènes dans les systèmes aquifères: contrastes avec le transports traditionnel de solutés

Transporte de patógenos en sistemas de agua subterránea: contrastes con el transporte tradicional de soluto

地下水系统中病原体的运移:与传统的溶质运移对比

Transporte de patógenos em sistemas de águas subterrâneas: contrates com o tradicional transporte de solutos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in “Colloid Filtration Theory”, a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

Résumé

La qualité de l’eau impacte par de nombreux aspects les questions de disponibilité de l’eau, depuis la proscription de son usage jusqu’aux perceptions sociales relatives à l’adéquation des besoins par rapport à l’usage prévu. Les sources de pathogènes et les processus de transport conditionnent la qualité de l’eau, du fait qu’ils sont à l’origine de nombreux foyers infectieux entraînant des pertes économiques importantes dues à la maladie et, dans certains cas, à des pertes de vie. Les foyers infections sont le résultat d’une très petite exposition (par ex., moins de 20 virus) à des sources très virulents (par ex. des trillions de virus transmis par un seul individu infecté). Ainsi, contrairement aux contaminants de type soluté, une exposition aiguë à une très petite quantité d’eau contaminée peut avoir des effets négatifs immédiats sur la santé. De même, les pathogènes sont plus nombreux que les solutés. Par conséquent les interactions entre les surfaces et les zones de dépôts deviennent importantes alors que des processus importants pour les solutés comme la diffusion deviennent moins importants. Ces différences sont définies dans la « Théorie de la Filtration des Colloïdes », une partie distincte du transport à l’échelle porale. Par conséquent, la compréhension des processus des pathogènes exige des modifications dans la manière de caractériser classiquement les systèmes aquifères, où la cible est située sur les bordures avant des panaches et au niveau des chenaux d’écoulement préférentiel, même si de telles structures mobilisent seulement une petite fraction du flux de l’aquifère. De plus, les temps de survie relativement courts des pathogènes dans le milieu souterrain nécessite de porter une plus grande attention aux voies d’écoulement très rapides (<10 ans). A travers une meilleure compréhension des différences entre les mécanismes de transport des pathogènes et des solutés telles que discutée ici, la qualité de l’eau et la protection des ressources sont approchées de manière plus large. Avec cette approche plus holistique et cette compréhension théorique, de meilleures évaluations peuvent être faites concernant la vulnérabilité de l’eau potable et la relation entre les eaux souterraines et la santé humaine.

Resumen

La calidad del agua afecta muchos aspectos de la disponibilidad de agua, por excluir del uso que sirve a la sociedad. La fuente de los patógenos y los procesos de transporte son factores determinantes de la calidad del agua, ya que han sido responsables de numerosos brotes que han provocado grandes pérdidas económicas por enfermedad y, en algunos casos, pérdida de vidas. Los brotes resultan de una exposición muy pequeña (por ejemplo, menos de 20 virus) de fuentes muy fuertes (por ejemplo, trillones de virus desprendidos por un solo individuo infectado). Así, a diferencia de los contaminantes de soluto, una exposición aguda a una cantidad muy pequeña de agua contaminada puede causar efectos adversos inmediatos para la salud. Del mismo modo, los patógenos son más grandes que los solutos. Por lo tanto, las interacciones entre las superficies y la sedimentación se vuelven importantes incluso cuando procesos importantes para los solutos tales como la difusión llegan a ser menos importantes. Estas diferencias se articulan en la “Colloid Filtration Theory”, una rama separada del transporte a escala de poros. En consecuencia, la comprensión de los procesos patógenos requiere cambios en la forma en que los sistemas de agua subterránea son normalmente caracterizados, donde el foco está en los límites delanteros de las plumas y las trayectorias preferenciales de flujo, incluso si tales características mueven sólo una pequeña fracción del flujo del acuífero. Además, los tiempos relativamente cortos de supervivencia de los patógenos en la subsuperficie requieren una mayor atención a las trayectorias rápidas de flujo (<10 años). Mediante una mejor comprensión de las diferencias entre los mecanismos de transporte de patógenos y de soluto que aquí se discuten, se alcanza una visión más amplia de la calidad del agua y la protección del agua a la fuente. Con esta visión más holística y la comprensión teórica, se pueden hacer mejores evaluaciones con respecto a la vulnerabilidad del agua potable y la relación entre el agua subterránea y la salud humana.

摘要

水质影响谁可用性的很多方面,从妨碍水的利用到符合目的的社会认知。病原体源及运移过程是水质的驱动者,因为它们对众多的疾病爆发负责,这些爆发引起疾病蔓延、有些情况下导致人员丧命,致使蒙受重大的经济损失。爆发起因于非常强的来源(例如从单个感染的个体中分裂出的亿万个病毒)非常小的暴露(例如不到20个病毒)。因此,和溶质污染物不同,短时间暴露于非常少量的污染水可立即引起对健康不利的影响。同样,病原体比溶质更大。因此,与表面的相互作用及着附就非常重要,正如过程对溶质溶质非常重要一样,而扩散就不显得那么重要。这些区别在孔隙尺度运移的单独分支“胶体过滤理论”中有明确的论述。所以,了解病原体过程需要在怎样典型描述地下水系统中有所改变,重点放在主要羽状物边缘及优先流通道,即使这样的特征影响到很小一部分含水层水流。此外,地下病原体相对短的存活时间需要更加注意非常快(<10年)的水流通道。通过更好地了解这里探讨的病原体和溶质运移机理之间的差异,可以获取更加包容的水质和源水保护方面的认识。有了更加全面的整体观和理论认识,可以对饮用水可用性及地下水和人类健康之间的关系作出更好的评价。

Resumo

A qualidade da água afeta diversos aspectos da disponibilidade de água, do impedimento de sua utilização a percepções sociais da adequação do uso. Fontes de patógenos e processos de transporte são condicionantes da qualidade da água pois eles têm sido responsáveis por numerosos surtos resultando em grandes perdas econômicas em razão de enfermidades e, em alguns casos, perdas de vidas. Epidemias resultam de exposições muito pequenas (p. ex. menos que 20 vírus) a fontes muito fortes (p. ex. trilhões de vírus transmitidos por um único indivíduo infectado). Assim, ao contrário dos contaminantes de soluto, uma exposição aguda a uma quantidade muito pequena de água contaminada pode causar efeitos adversos imediatos à saúde. Da mesma forma, os patógenos são maiores do que os solutos. Assim, as interações com superfícies e sedimentação tornam-se importantes mesmo quando os processos importantes para solutos como a difusão se tornam menos importantes. Essas diferenças são expressas na “Teoria de Filteração de Colóides”, um ramo separado de transporte na escala do poro. Consequentemente, a compreensão dos processos patogénicos requer alterações na forma como os sistemas de águas subterrâneas são tipicamente caracterizados, onde o foco está nos limites das plumas e caminhos de fluxo preferencial, mesmo que essas características movam apenas uma fracção muito pequena do fluxo do aquífero. Além disso, os tempos de sobrevivência relativamente curtos dos agentes patogénicos na subsuperfície requerem uma maior atenção para caminhos de fluxo muito rápidos (<10 anos). Ao compreender melhor as diferenças entre os mecanismos de transporte de agentes patogénicos e de soluto aqui discutidos, alcança-se uma visão mais abrangente da qualidade da água e da protecção das fontes de água. Com esta visão mais holística e compreensão teórica, podem ser feitas melhores avaliações sobre a vulnerabilidade da água potável e a relação entre as águas subterrâneas e a saúde humana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbaszadegan M, Stewart PW, LeChevallier MW (1999) A strategy for the detection of viruses in water by PCR. Appl Environ Microbiol 65:444–449

    Google Scholar 

  • Abbaszadegan M, LeChevallier MW, Gerba CP (2003) Occurrence of viruses in US groundwaters. J Am Water Works Assoc 95:107–120

    Google Scholar 

  • Alley WA, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186, 79 pp

  • Bales RC, Gerba CP, Grondin GH, Jensen SL (1989) Bacteriophage transport in sandy soil and fractured tuff. Appl Environ Microbiol 55(8):2061–2067

    Google Scholar 

  • Bales RC, Li S, Maguire KM, Yahya MT, Gerba CP (1993) MS-2 and poliovirus transport in porous media: hydrophobic effects and chemical perturbations. Water Resour Res 29(4):957–963. doi:10.1029/92WR02986

    Article  Google Scholar 

  • Bendersky M, Davis JM (2011) DLVO interaction of colloidal particles with topographically and chemically heterogeneous surfaces. J Colloid Interface Sci 353(1):87–97

    Article  Google Scholar 

  • Bhattacharjee S, Ko C-H, Elimelech M (1998) DLVO interaction between rough surfaces. Langmuir 14(12):3365–3375

    Article  Google Scholar 

  • Borchardt MA, Bertz PD, Spencer SK, Battigelli DA (2003) Incidence of enteric viruses in groundwater from household wells in Wisconsin. Appl Environ Microbiol 69:1172–1180

    Article  Google Scholar 

  • Borchardt MA, Haas NL, Hunt RJ (2004) Vulnerability of drinking-water wells in La Crosse, Wisconsin to enteric-virus contamination from surface water contributions. Appl Environ Microbiol 70(10):5937–5946. doi:10.1128/AEM.70.10.5937-5946.2004

    Article  Google Scholar 

  • Borchardt MA, Bradbury KR, Alexander EC, Kolberg RJ, Alexander SC, Archer JR, Braatz LA, Forest BM, Green JA, Spencer SK (2011) Norovirus outbreak caused by a new septic system in a dolomite aquifer. Groundwater 49(1):85–97. doi:10.1111/j.1745-6584.2010.00686.x

    Article  Google Scholar 

  • Borchardt MA, Spencer SK, Kieke BA Jr, Lambertini E, Loge FJ (2012) Viruses in non-disinfected drinking water from municipal wells and community incidence of acute gastrointestinal illness. Environ Health Perspect 120:1272–1279

    Article  Google Scholar 

  • Bradbury KR, Borchardt MA, Gotkowitz M, Spencer SK, Zhu J, Hunt RJ (2013) Source and transport of human enteric viruses in deep municipal water supply wells. Environ Sci Technol 47(9):4096–4103. doi:10.1021/es100698m

    Article  Google Scholar 

  • Bradford SA, Morales VL, Zhang W, Harvey RW, Packman AI, Mohanram A, Welty C (2013) Transport and fate of microbial pathogens in agricultural settings. Crit Rev Environ Sci Technol 43:775–893. doi:10.1080/10643389.2012.710449

    Article  Google Scholar 

  • CDC (Centers for Disease Control and Prevention) (2016) Norovirus and working with food. http://www.cdc.gov/norovirus/food-handlers/work-with-food.html. Accessed 14 Nov 2016

  • Craun GF, Brunkard JM, Yoder JS, Roberts VA, Carpenter J, Wade T, Calderon RL, Roberts JM, Breach MJ, Roy SL (2010) Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clin Microbiol Rev 23(3):507–528. doi:10.1128/CMR.00077-09

    Article  Google Scholar 

  • DeBorde DC, Woessner WW, Lauerman B, Ball PN (1998) Virus occurrence and transport in a school septic system and unconfined aquifer. Groundwater 36(5):825–834. doi:10.1111/j.1745-6584.1998.tb02201.x

    Article  Google Scholar 

  • DeBorde DC, Woessner WW, Kiley QT, Ball P (1999) Rapid transport of viruses in a floodplain aquifer. Water Res 33(10):2229–2238. doi:10.1016/S0043-1354(98)00450-3

    Article  Google Scholar 

  • Duffadar R, Kalasin S, Davis JM, Santore MM (2009) The impact of nanoscale chemical features on micron-scale adhesion: crossover from heterogeneity-dominated to mean-field behavior. J Colloid Interface Sci 337(2):396–407

    Article  Google Scholar 

  • Elimelech M, O’Melia CR (1990) Kinetics of deposition of colloidal particles in porous media. Environ Sci Technol 24(10):1528–1536

    Article  Google Scholar 

  • Feachem RG, Bradley DJ, Garelick H, Mara DD (1983) Sanitation and disease: health aspects of excreta and wastewater management. World Bank Studies in Water Supply and Sanitation, vol 3. Wiley, Chichester, UK, 530 pp

  • Fout GS, Martinson BC, Moyer MWN, Dahling DR (2003) A multiplex reverse transcription-PCR method for detection of human enteric viruses in groundwater. Appl Environ Microbiol 69:3158–3164

    Article  Google Scholar 

  • Gerba CP (1983) Virus survival and transport in groundwater. Dev Ind Microbiol 24:247–251

    Google Scholar 

  • Gerba CP, Wallis C, Melnick JL (1975) The fate of wastewater bacteria and viruses in soil. J Irrig Drain Div ASCE 101:157–174

    Google Scholar 

  • Gotkowitz MB, Bradbury KR, Borchardt MA, Zhu J, Spencer SK (2016) Effects of climate and sewer condition on virus transport to groundwater. Environ Sci Technol. doi:10.1021/acs.est.6b01422

    Google Scholar 

  • Hahn MW, O’Melia CR (2004) Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ Sci Technol 38(1):210–220

    Article  Google Scholar 

  • Happel J (1958) Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AICHE J 4(2):197–201

    Article  Google Scholar 

  • Harvey RW (1997) In situ and laboratory methods to study subsurface microbial transport. In: Hurst CJ (ed) Manual of environmental microbiology. American Society for Microbiology Press, Washington, DC, pp 586–599

    Google Scholar 

  • Harvey RW, Garabedian SP (1991) Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environ Sci Technol 25:178–185

    Article  Google Scholar 

  • Hoek EMV, Bhattacharjee S, Elimelech M (2003) Effect of membrane surface roughness on colloid−membrane DLVO interactions. Langmuir 19(11):4836–4847

    Article  Google Scholar 

  • Hrudey SE, Hrudey EJ (2004) Safe drinking water: lessons from recent outbreaks in affluent nations. IWA, London, 512 pp

  • Hrudey SE, Hrudey EJ (2007) Published case studies of waterborne disease outbreaks: evidence of a recurrent threat. Water Environ Res 79(3):233–245

    Article  Google Scholar 

  • Hunt RJ, Borchardt MA, Bradbury KR (2014) Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers. Groundwater 52(2):187–193. doi:10.1111/gwat.12158

    Article  Google Scholar 

  • Hunt RJ, Borchardt MA, Richards KD, Spencer SK (2010) Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses. Environ Sci Technol 44(20):7956–7963. doi:10.1021/es100698m

    Article  Google Scholar 

  • Israelachvili JN (2011) Solvation, structural, and hydration forces, chap 15. In: Israelachvili JN (ed) Intermolecular and surface forces, 3rd edn. Academic, San Diego, pp 341–380

    Google Scholar 

  • John DE, Rose JB (2005) Review of factors affecting microbial survival in groundwater. Environ Sci Technol 39(19):7345–7356

    Article  Google Scholar 

  • Johnson WP, Hilpert M (2013) Upscaling colloid transport and retention under unfavorable conditions: linking mass transfer to pore and grain topology. Water Resour Res 49(9):5328–5341

    Article  Google Scholar 

  • Johnson WP, Pazmino E, Ma HL (2010) Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations. Water Res 44(4):1158–1169

    Article  Google Scholar 

  • Jurgens BC, Bohlke JK, Eberts SM (2012) TracerLPM: an Excel® workbook for interpreting groundwater age distributions from environmental tracer data. US Geol Surv Tech Methods Rep 4-F3, p 60

  • Kinner NE, Harvey RW, Blakeslee K, Novarino G, Meeker LD (1998) Size-selective predation on groundwater bacteria by nanoflagellates in an organic-contaminated aquifer. Appl Environ Microbiol 64(2):618–625

    Google Scholar 

  • Lance JC, Gerba CP (1984) Virus movement in soil during saturated and unsaturated flow. Appl Environ Microbiol 47(2):335–337

    Google Scholar 

  • Li XQ, Scheibe TD, Johnson WP (2004) Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon. Environ Sci Technol 38(21):5616–5625

    Article  Google Scholar 

  • Long W, Hilpert MA (2009) Correlation for the collector efficiency of Brownian particles in clean-bed filtration in sphere packings by a lattice-Boltzmann method. Environ Sci Technol 43(12):4419–4424

    Article  Google Scholar 

  • Ma H, Pazmino E, Johnson WP (2011) Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed nonstraining colloid retention mechanisms in porous media in the presence of energy barriers. Langmuir 27(24):14982–14994

    Article  Google Scholar 

  • McCarthy JF, McKay LD (2004) Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J 3(2):326–337. doi:10.2113/3.2.326

    Google Scholar 

  • McKay LD (2011) Foreword: pathogens and fecal indicators in groundwater. Groundwater 49(1):1–3. doi:10.1111/j.1745-6584.2010.00763.x

    Article  Google Scholar 

  • McKay LD, Gillham RW, Cherry JA (1993) Field experiments in a fractured clay till: 1. solute and colloid transport. Water Resour Res 29(12):3879–3880

    Article  Google Scholar 

  • Molnar IL, Johnson WP, Gerhard JI, Willson CS, O’Carroll DM (2015) Predicting colloid transport through saturated porous media: a critical review. Water Resour Res 51(9):6804–6845

    Article  Google Scholar 

  • Nelson KE, Ginn TR (2011) New collector efficiency equation for colloid filtration in both natural and engineered flow conditions. Water Resour Res 47:W05543. doi:10.1029/2010WR009587

    Article  Google Scholar 

  • Pazmino EF, Ma H, Johnson WP (2011) Applicability of colloid filtration theory in size-distributed, reduced porosity, granular media in the absence of energy barriers. Environ Sci Technol 45(24):10401–10407

    Article  Google Scholar 

  • Pazmino EF, Trauscht J, Johnson WP (2014a) Release of colloids from primary minimum contact under unfavorable conditions by perturbations in ionic strength and flow rate. Environ Sci Technol 48(16):9227–9235

    Article  Google Scholar 

  • Pazmino EF, Trauscht J, Dame B, Johnson WP (2014b) Power law size-distributed heterogeneity explains colloid retention on soda lime glass in the presence of energy barriers. Langmuir 30(19):5412–5421

    Article  Google Scholar 

  • Pieper AP, Ryan JN, Harvey RW, Amy GL, Illangasekare TH, Metge DW (1997) Transport and recovery of Bacteriophage PRD1 in a sand and gravel aquifer: effect of sewage-derived organic matter. Environ Sci Technol 31(4):1163–1170. doi:10.1021/es960670y

    Article  Google Scholar 

  • Powelson DK, Gerba CP, Yahya MT (1993) Virus transport and removal in wastewater during aquifer recharge. Water Resour Res 27(4):583–590

    Google Scholar 

  • Rajagopalan R, Tien C (1976) Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AICHE J 22(3):523–533

    Article  Google Scholar 

  • Seitz SR, Leon JS, Schwab KJ, Lyon GM, Dowd M, McDaniels M, Abdulhafid G, Fernandez NL, Lindesmith LC, Baric RS, Moe CL (2011) Norovirus infectivity in humans and persistence in water. Appl Environ Microbiol 77(19):6884–6888

    Article  Google Scholar 

  • Shen C, Baoguo L, Huang Y, Jin Y (2007) Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions. Environ Sci Technol 41(20):6976–6982

    Article  Google Scholar 

  • Tafuri AN, Selvakumar A (2002) Wastewater collection system infrastructure research needs in the USA. Urban Water J 4:21–29

    Article  Google Scholar 

  • Tong M, Johnson WP (2006) Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ Sci Technol 40(24):7725–7731. doi:10.1021/es061201r

    Article  Google Scholar 

  • Trauscht J, Pazmino EF, Johnson WP (2015) Prediction of nanoparticle and colloid attachment on unfavorable mineral surfaces using representative discrete heterogeneity. Langmuir 31(34):9366–9378

    Article  Google Scholar 

  • Tufenkji N, Elimelech M (2004) Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20(25):10818–10828

    Article  Google Scholar 

  • USEPA (1989) Results of the evaluation of groundwater impacts of sewer exfiltration. Engineering Science Pb95-158358. US Environmental Protection Agency, Washington, DC

  • USEPA (2006) Occurrence and monitoring document for final ground water rule. USEPA publication no. 815-R-06-012. Office of Water, US Environmental Protection Agency, Washington, DC

  • Vilker VL (1978) An adsorption model for prediction of virus breakthrough from fixed beds. In: Proceedings of International Symposium on Land Treatment of Wastewater, vol 2. US Army Corps of Engineers Cold Regions Research and Engineering Laboratory, Hanover, NH, pp 381–388

  • Vilker VL (1980) Simulating virus movement in soils. In: Iskandar IK (ed) Modeling wastewater renovation: land treatment. Wiley, New York, pp 223–253

    Google Scholar 

  • Vilker VL, Burge WD (1980) Adsorption mass transfer model for virus transport in soils. Water Res 14:783–790

    Article  Google Scholar 

  • Warner KL, Barataud F, Hunt RJ, Benoit M, Anglade J, Borchardt MA (2016) Interactions of water quality and integrated groundwater management: examples from the United States and Europe. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo J-D, Ross A (eds) Integrated groundwater management: concepts, approaches and challenges. Springer, Heidelberg, Germany, p 953

  • Woessner WW, Ball PN, DeBorde DC, Troy TL (2001) Viral transport in a sand and gravel aquifer under field pumping conditions. Groundwater 39(6):886–894. doi:10.1111/j.1745-6584.2001.tb02476.x

    Article  Google Scholar 

  • Wu J, Long SC, Das D, Dorner SM (2011) Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 9:265–278

    Article  Google Scholar 

  • Yao KM, Habibian MT, O’Melia CR (1971) Water and waste water filtration: concepts and applications. Environ Sci Technol 5:1105–1112

    Article  Google Scholar 

  • Yates MV, Yates SR, Wagner J, Gerba CP (1987) Modeling virus survival and transport in the subsurface. J Contam Hydrol 1(3):329–345

    Article  Google Scholar 

  • Zhang P, Johnson WP, Piana MJ, Fuller CC, Naftz DL (2001a) Potential artifacts in interpretation of differential breakthrough of colloids and dissolved tracers in the context of transport in a zero-valent iron permeable reactive barrier. Groundwater 39(6):831–840

    Article  Google Scholar 

  • Zhang P, Johnson WP, Scheibe TD, Choi KH, Dobbs FC, Mailloux BJ (2001b) Extended tailing of bacteria following breakthrough at the Narrow Channel focus area, Oyster, Virginia. Water Resour Res 377(11):2687–2698

    Article  Google Scholar 

Download references

Acknowledgements

Ron Harvey (USGS), Mark Borchardt (USDA-ARS), and an anonymous reviewer are thanked for their review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Hunt.

Additional information

Published in the special issue “Hydrogeology and Human Health”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, R.J., Johnson, W.P. Pathogen transport in groundwater systems: contrasts with traditional solute transport. Hydrogeol J 25, 921–930 (2017). https://doi.org/10.1007/s10040-016-1502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1502-z

Keywords

Navigation