Skip to main content
Log in

Using lattice Boltzmann method to control entropy generation during conjugate heat transfer of power-law liquids with magnetic field and heat absorption/production

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Installation of electronic components in a confined space makes the issue of heat transfer and cooling inside shaped chambers of great importance. Investigation of the entropy generated in the equipment is considered as an important approach in the optimal design of devices in which heat transfer occurs. The innovation of the present work is the modeling of non-uniform magnetic field with heat absorption/production in the determination of the amount of entropy produced arising from conjugate heat transfer of power-law liquid inside the K-shaped cavity that has not been studied. The main variables of this study are Rayleigh number (103 and 105), Hartmann number (0, 15, 30 and 45), heat absorption/production (−7, 0 and +7), thermal conductivity ratio (1, 10 and 50), cavity aspect ratio (0.2, 0.4 and 0.6), type of magnetic field and kind of fluid (Pseudoplastic, Newtonian and Dilatant fluids). The obtained outcomes revealed that: The power of the current and the amount of heat transfer can be controlled by applying magnetic field. Less reduction of the mean Nusselt number and current strength is achieved by applying magnetic field non-uniformly. Enhancement of the heat absorption/production coefficient leads to a decrement of the mean Nusselt number, which this impact increases with augmenting Hartmann number. Enhancement of the cavity aspect ratio reduces the influence of magnetic field, flow strength, mean Nusselt number and entropy produced, which this effect is negligible for dilatant fluid. Heat transfer is a function of the ratio of thermal conductivity and Rayleigh number so that as these two values increase, the influence of enhancement of the Hartmann number is more pronounced. The influence of increment of the Hartmann number on the entropy production: increasing up to 30% in heat production mode and decreasing up to 10% in heat absorption mode. Entropy production increases with increasing Rayleigh number and heat absorption/production coefficient. The influence of magnetic field on entropy production for pseudoplastic fluid is most significant. Generally, the influence of variations thermal conductivity ratio and Hartmann number on the dilatant fluid is insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

AR:

Cavity aspect ratio

B:

Magnetic field strength (T)

Be:

Bejan number

c :

Discrete lattice velocity (m s1)

F :

External force (N)

f:

Density distribution function

feq :

Equilibrium density distribution function

g:

Energy distribution function

geq :

Equilibrium energy distribution function

g :

Gravity force (m s2)

h:

Magnetic field distribution function

heq :

Equilibrium magnetic field distribution function

H:

Cavity height and length (m)

Ha:

Hartmann number

HAP:

Heat absorption/production

HAPC:

Heat absorption/production coefficient

k:

Thermal conductivity (W m1 K1)

MF:

Magnetic field

n:

Power-law index

Nu:

Nusselt number

p:

Pressure (Pa)

Pr:

Prandtl number

Q:

Volumetric heat absorption/production (W K1)

Ra:

Rayleigh number

S:

Total entropy (kJ kg1 K1)

SF :

Entropy production arising from fluid friction (kJ kg1 K1)

SM :

Entropy production arising from magnetic field (kJ kg1 K1)

SH :

Entropy production arising from heat transfer (kJ kg1 K1)

T:

Temperature (K)

TCR:

Thermal conductivity ratio \(\left( {\frac{{{\text{k}}_{{\text{s}}} }}{{{\text{k}}_{{\text{f}}} }}} \right)\)

TMF:

Type of magnetic field

W:

Thickness of conductive wall (m)

u (u, v):

Macroscopic velocities (m s1)

x(x,y):

Lattice coordinates (m)

α :

Thermal diffusivity (m2 s1)

β :

Thermal expansion coefficient (K1)

τ * :

Flow field relaxation time

τ ** :

Temperature field relaxation time

τ *** :

Magnetic field relaxation time

υ :

Kinematic viscosity (m2 s1)

θ:

Dimensionless temperature

ρ :

Density (kg m3)

µ :

Dynamic viscosity (pa s)

ψ :

Stream function (m2 s1)

ω :

Weighting factor

c:

Cold

f:

Fluid

h:

Hot

s:

Solid

References

  1. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M (2016) Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under magnetic field. Exp Therm Fluid Sci 1(74):265–270

    Article  Google Scholar 

  2. Mourad A, Abderrahmane A, Younis O, Marzouki R, Alazzam A (2022) Numerical simulations of magnetohydrodynamics natural convection and entropy production in a porous annulus bounded by wavy cylinder and koch snowflake loaded with Cu–Water nanofluid. Micromachines 13(2):182

    Article  Google Scholar 

  3. Zheng Y, Zhang X, Nouri M, Amini A, Karimipour A, Hekmatifar M, Sabetvand R, Ngooyen Q, Karimipour A (2021) Atomic rheology analysis of the external magnetic field effects on nanofluid in non-ideal microchannel via molecular dynamic method. J Therm Anal Calorim 143(2):1655–1663

    Article  Google Scholar 

  4. Liu X, Fagiry MA, Sajadi SM, Almasri RA, Karimipour A, Li Z, Baleanu D, Ghaemi F (2022) The investigation of Fe3O4 atomic aggregation in a nanochannel in the presence of magnetic field: effects of nanoparticles distance center of mass, temperature and total energy via molecular dynamics approach. J Mol Liq 15(348):118400

    Article  Google Scholar 

  5. Ferhi M, Djebali R, Mebarek-Oudina F, Abu-Hamdeh NH, Abboudi S (2022) Magnetohydrodynamic free convection through entropy generation scrutiny of eco-friendly nanoliquid in a divided L-shaped heat exchanger with lattice boltzmann method simulation. J Nanofluids 11:99–112

    Article  Google Scholar 

  6. HajatzadehPordanjani A, Aghakhani S, Karimipour A, Afrand M, Goodarzi M (2019) Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim 137(3):997–1019

    Article  Google Scholar 

  7. Anwar MI, Firdous H, Zubaidi AA, Abbas N, Nadeem S (2022) Computational analysis of induced magnetohydrodynamic non-Newtonian nanofluid flow over nonlinear stretching sheet. Progr React Kin Mech 17(47):14686783211072712

    Google Scholar 

  8. Nemati M, Sefid M, Mohammad Sajadi S, Ghaemi F, Baleanu D (2022) Lattice Boltzmann method to study free convection and entropy generation of power-law fluids under influence of magnetic field and heat absorption/generation. J Therm Anal Calorim 16:1–26

    Google Scholar 

  9. Nemati M, Sani HM, Chamkha AJ (2021) Optimal wall natural convection for a non-Newtonian fluid with heat generation/absorption and magnetic field in a quarter-oval inclined cavity. Phys Scr 96(12):125234

    Article  Google Scholar 

  10. Alsabery AI, Naganthran K, Azizul FM, Hashim I, Nazar R (2020) Numerical study of conjugate natural convection heat transfer of a blood filled horizontal concentric annulus. Int Commun Heat Mass Transf 1(114):104568

    Article  Google Scholar 

  11. Amiri MH, Keshavarzi A, Karimipour A, Bahiraei M, Goodarzi M, Esfahani JA (2019) A 3-D numerical simulation of non-Newtonian blood flow through femoral artery bifurcation with a moderate arteriosclerosis: investigating Newtonian/non-Newtonian flow and its effects on elastic vessel walls. Heat Mass Transf 55(7):2037–2047

    Article  Google Scholar 

  12. Bisht M, Patil DV (2021) Assessment of multiple relaxation time-lattice Boltzmann method framework for non-Newtonian fluid flow simulations. Eur J Mech-B/Fluids 1(85):322–334

    Article  MathSciNet  MATH  Google Scholar 

  13. Safaei MR, Rahmanian B, Goodarzi M (2011) Numerical study of laminar mixed convection heat transfer of power-law non-Newtonian fluids in square enclosures by finite volume method. Int J Phys Sci 6(33):7456–7470

    Google Scholar 

  14. Gheynani AR, Akbari OA, Zarringhalam M, Shabani GA, Alnaqi AA, Goodarzi M, Toghraie D (2018) Investigating the effect of nanoparticles diameter on turbulent flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in a microtube. Int J Numer Methods Heat Fluid Flow 29(5):1699–1723

    Article  Google Scholar 

  15. Nemati M, Sefid M, Rahmati A (2021) Analysis of the effect of periodic magnetic field, heat absorption/generation and aspect ratio of the enclosure on non-Newtonian natural convection. J Heat Mass Transf Res 8(2):187–203

    Google Scholar 

  16. Selimefendigil F, Akbulut Y, Sengur A, Oztop HF (2020) MHD conjugate natural convection in a porous cavity involving a curved conductive partition and estimations by using Long Short-Term Memory Networks. J Therm Anal Calorim 140(3):1457–1468

    Article  Google Scholar 

  17. Nemati M, Sefid M (2022) Evaluation of amount the entropy production due to MHD hybrid nanofluid conjugate heat transfer with heat absorption/generation. Fluid Mech Aerodyn J 10(2):141–168

    Google Scholar 

  18. Gao XL, Wu J, Luo K, Yi HL, Tan HP (2022) Lattice Boltzmann analysis of conjugate heat transfer in the presence of electrohydrodynamic flow. Int Commun Heat Mass Transf 1(132):105878

    Article  Google Scholar 

  19. Saha S, Barua S, Kushwaha B, Subedi S, Hasan MN, Saha SC (2020) Conjugate natural convection in a corrugated solid partitioned differentially heated square cavity. Numer Heat Transf Part A: Appl 78(10):541–559

    Article  Google Scholar 

  20. Al-Farhany K, Al-Chlaihawi KK, Al-dawody MF, Biswas N, Chamkha AJ (2021) Effects of fins on magnetohydrodynamic conjugate natural convection in a nanofluid-saturated porous inclined enclosure. Int Commun Heat Mass Transf 1(126):105413

    Article  Google Scholar 

  21. Hussein AK, Mahdi MA, Younis O (2021) Numerical simulation of entropy generation of conjugate heat transfer in a porous cavity with finite walls and localized heat source. J Adv Res Fluid Mech Therm Sci 84(2):116–151

    Article  Google Scholar 

  22. Priam SS, Nasrin R (2021) Oriented magneto-conjugate heat transfer and entropy generation in an inclined domain having wavy partition. Int Commun Heat Mass Transf 1(126):105430

    Article  Google Scholar 

  23. Mozaffari M, D’Orazio A, Karimipour A, Abdollahi A, Safaei MR (2019) Lattice Boltzmann method to simulate convection heat transfer in a microchannel under heat flux: gravity and inclination angle on slip-velocity. Int J Num Methods Heat Fluid Flow 30:3371–3398

    Article  Google Scholar 

  24. Zhang Y, Xie G, Karimipour A (2020) Comprehensive analysis on the effect of asymmetric heat fluxes on microchannel slip flow and heat transfer via a lattice Boltzmann method. Int Commun Heat Mass Transf 1(118):104856

    Article  Google Scholar 

  25. Ben Ltaifa K, Orazio A, Karimipour A, Dhahri H (2021) Numerical analysis of forced convection heat transfer in a rectangular micro-channel totally filled with Ag/water nano fluid in slip flow regime using the lattice Boltzmann method. Web Conf 321:04008

    Google Scholar 

  26. Nemati M, Sefid M, Jahromi B, Jahangiri R (2022) The effect of magnetic field and nanoparticle shape on heat transfer in an inclined cavity with uniform heat generation/absorption. Comput Methods Eng 40(2):109–126

    Google Scholar 

  27. .

  28. Hosseini SA, Abdelsamie A, Darabiha N, Thévenin D (2020) Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows. Phys Fluids 32(7):077105

    Article  Google Scholar 

  29. Ruiz-Gutiérrez É, Edwards AM, McHale G, Newton MI, Wells GG, Brown CV, Ledesma-Aguilar R (2021) Lattice Boltzmann simulations of multiphase dielectric fluids. Langmuir 37(24):7328–40

    Article  Google Scholar 

  30. Kashyap D, Dass AK, Oztop HF, Abu-Hamdeh N (2021) Multiple-relaxation-time lattice Boltzmann analysis of entropy generation in a hot-block-inserted square cavity for different Prandtl numbers. Int J Therm Sci 1(165):106948

    Article  Google Scholar 

  31. Khan NH, Paswan MK, Hassan MA (2022) Natural convection of hybrid nanofluid heat transport and entropy generation in cavity by using Lattice Boltzmann Method. J Indian Chem Soc 13:100344

    Article  Google Scholar 

  32. Mliki B, Abbassi MA (2021) Entropy generation of MHD natural convection heat transfer in a heated incinerator using hybrid-nanoliquid. Propul Power Res 10(2):143–154

    Article  Google Scholar 

  33. Bozorg MV, Siavashi M (2019) Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int J Mech Sci 1(151):842–857

    Article  Google Scholar 

  34. Nemati M, Mohamadzade H, Sefid M (2020) Investigation the effect of direction of wall movement on mixed convection in porous enclosure with heat absorption/generation and magnetic field. Fluid Mech Aerodyn J. 9(1):99–115

    Google Scholar 

  35. Hamzah HK, Ali FH, Hatami M, Jing D (2020) Effect of two baffles on MHD natural convection in U-shape‎ superposed by solid nanoparticle having different shapes. J Appl Comput Mech 6:1200–1209

    Google Scholar 

  36. Molana M, Dogonchi AS, Armaghani T, Chamkha AJ, Ganji DD, Tlili I (2020) Investigation of hydrothermal behavior of Fe3O4-H2O nanofluid natural convection in a novel shape of porous cavity subjected to magnetic field dependent (MFD) viscosity. J Energy Storage 1(30):101395

    Article  Google Scholar 

  37. Reddy ES, Panda S, Nayak MK, Makinde OD (2021) Cross flow on transient double-diffusive natural convection in inclined porous trapezoidal enclosures. Heat Transf 50(1):849–875

    Article  Google Scholar 

  38. Bilal S, Rehman M, Noeiaghdam S, Ahmad H, Akgül A (2021) Numerical analysis of natural convection driven flow of a non-Newtonian power-law fluid in a Trapezoidal enclosure with a U-shaped constructal. Energies. 14(17):5355

    Article  Google Scholar 

  39. Hossain MS, Alim M, Andallah LS (2020) Numerical simulation of mhd natural convection flow within porous trapezoidal cavity with heated triangular obstacle. Int J Appl Comput Math 6(6):1–27

    Article  MathSciNet  MATH  Google Scholar 

  40. Nemati M, Sefid M (2021) The application of multiple relaxation time lattice Boltzmann method to simulate the Newtonian and non-Newtonian MHD natural convection in cavity with lozenge barrier. Fluid Mech Aerodyn J 10(1):17–35

    Google Scholar 

  41. Rahman A, Nag P, Molla MM, Hassan S (2021) Magnetic field effects on natural convection and entropy generation of non-Newtonian fluids using multiple-relaxation-time lattice Boltzmann method. Int J Modern Phys C 32(01):2150015

    Article  MathSciNet  Google Scholar 

  42. Afsana S, Molla MM, Nag P, Saha LK, Siddiqa S (2021) MHD natural convection and entropy generation of non-Newtonian ferrofluid in a wavy enclosure. Int J Mech Sci 15(198):106350

    Article  Google Scholar 

  43. Ferhi M, Djebali R, Al-Kouz W, Abboudi S, Chamkha AJ (2021) MHD conjugate heat transfer and entropy generation analysis of MWCNT/water nanofluid in a partially heated divided medium. Heat Transf 50(1):126–144

    Article  Google Scholar 

  44. Rezaie M, Maghrebi MJ (2015) Numerical investigation of conjugate natural convection heat transfer in porous enclosure with lattice Boltzmann method. J Solid Fluid Mech 5(2):217–231

    Google Scholar 

  45. Tayebi T, Öztop HF, Chamkha AJ (2020) Natural convection and entropy production in hybrid nanofluid filled-annular elliptical cavity with internal heat generation or absorption. Therm Sci Eng Progr 1(19):100605

    Article  Google Scholar 

  46. Zhang R, Aghakhani S, Pordanjani AH, Vahedi SM, Shahsavar A, Afrand M (2020) Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method. Eur Phys J Plus 135(2):184

    Article  Google Scholar 

  47. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M (2018) Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids 15(176):51–67

    Article  MathSciNet  MATH  Google Scholar 

  48. Mohebbi R, Rasam H (2020) Numerical simulation of conjugate heat transfer in a square cavity consisting the conducting partitions by utilizing lattice Boltzmann method. Phys A: Stat Mech Appl 15(546):123050

    Article  MathSciNet  MATH  Google Scholar 

  49. Ferhi M, Djebali R, Abboudi S, Kharroubi H (2019) Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the lattice Boltzmann method. J Therm Anal Calorim 138(5):3065–3088

    Article  Google Scholar 

  50. Khosravi R, Rabiei S, Khaki M, Safaei MR, Goodarzi M (2021) Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. J Therm Anal Calorim 145(4):1949–1967

    Article  Google Scholar 

  51. Aghaei A, Sheikhzadeh GA, Goodarzi M, Hasani H, Damirchi H, Afrand M (2018) Effect of horizontal and vertical elliptic baffles inside an enclosure on the mixed convection of a MWCNTs-water nanofluid and its entropy generation. Eur Phys J Plus 133(11):486

    Article  Google Scholar 

  52. Alazwari MA, Abu-Hamdeh NH, Goodarzi M (2021) Entropy optimization of first-grade viscoelastic nanofluid flow over a stretching sheet by using classical Keller-box scheme. Mathematics 9(20):2563

    Article  Google Scholar 

  53. Jamshed W, Alanazi AK, Isa SS, Banerjee R, Eid MR, Nisar KS, Alshahrei H, Goodarzi M (2022) Thermal efficiency enhancement of solar aircraft by utilizing unsteady hybrid nanofluid: a single-phase optimized entropy analysis. Sustain Energy Technol Assess 1(52):101898

    Google Scholar 

  54. Han L, Lu C, Yumashev A, Bahrami D, Kalbasi R, Jahangiri M, Karimipour A, Band SS, Chau KW, Mosavi A (2021) Numerical investigation of magnetic field on forced convection heat transfer and entropy generation in a microchannel with trapezoidal ribs. Eng Appl Comput Fluid Mech 15(1):1746–1760

    Google Scholar 

  55. Li Y, Firouzi M, Karimipour A, Afrand M (2020) Effect of an inclined partition with constant thermal conductivity on natural convection and entropy generation of a nanofluid under magnetic field inside an inclined enclosure: applicable for electronic cooling. Adv Powder Technol 31(2):645–657

    Article  Google Scholar 

  56. Ghasemi K, Siavashi M (2017) Lattice Boltzmann numerical simulation and entropy generation analysis of natural convection of nanofluid in a porous cavity with different linear temperature distributions on side walls. J Mol Liq 1(233):415–430

    Article  Google Scholar 

  57. Yousofvand R, Derakhshan S, Ghasemi K, Siavashi M (2017) MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int J Mech Sci 1(133):73–90

    Article  Google Scholar 

  58. Hamzah HK, Ali FH, Hatami M (2022) MHD mixed convection and entropy generation of CNT-water nanofluid in a wavy lid-driven porous enclosure at different boundary conditions. Sci Rep 12(1):1–27

    Article  Google Scholar 

  59. Hussein AK, Ashorynejad HR, Shikholeslami M, Sivasankaran S (2014) Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field. Nucl Eng Des 1(268):10–17

    Article  Google Scholar 

  60. Nemati H, Farhadi M, Sedighi K, Ashorynejad HR, Fattahi EJ (2012) Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model. Sci Iran 19(2):303–310

    Article  Google Scholar 

  61. Bararnia H, Soleimani S, Ganji DD (2011) Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure. Int Commun Heat Mass Transf 38(10):1436–1442

    Article  Google Scholar 

  62. Nemati M, Sani HM, Jahangiri R, Chamkha AJ (2022) MHD natural convection in a cavity with different geometries filled with a nanofluid in the presence of heat generation/absorption using lattice Boltzmann method. J Therm Anal Calorim 24:1–5

    Google Scholar 

  63. Ilis GG, Mobedi M, Sunden B (2008) Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf 35(6):696–703

    Article  Google Scholar 

  64. Khezzar L, Siginer D, Vinogradov I (2012) Natural convection of power law fluids in inclined cavities. Int J Thermal Sci 1(53):8–17

    Article  Google Scholar 

  65. Kefayati GR (2015) Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity. Chem Eng Res Des 1(94):337–354

    Article  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Nemati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, M., Farahani, S.D. Using lattice Boltzmann method to control entropy generation during conjugate heat transfer of power-law liquids with magnetic field and heat absorption/production. Comp. Part. Mech. 10, 331–354 (2023). https://doi.org/10.1007/s40571-022-00497-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00497-3

Keywords

Navigation