Skip to main content
Log in

Lattice Boltzmann method to study free convection and entropy generation of power-law fluids under influence of magnetic field and heat absorption/generation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this present work assesses heat transfer and entropy generation arising from free convection of power-law fluids in a trapezoidal chamber under the effect of uniform and non-uniform magnetic field with heat absorption/generation by using LBM. The impact of Rayleigh number (103, 104 and 105), wall slope (11.5°, 26.5° and 38.5°), power-law index (0.75, 1.0 and 1.25), Hartmann number (0, 15, 30 and 45), type of magnetic field applied (uniform and non-uniform) with heat absorption/generation (− 10, − 5, 0, + 5 and + 10) on fluid flow and heat transfer characteristics has been evaluated. By enhancement of the Rayleigh number and decreasing wall slope of the chamber, the flow strength, the rate of heat transfer and entropy generation increase and the effect of the magnetic field becomes more remarkable. By applying a magnetic field non-uniformly, the flow strength and heat transfer rate can be grown to about 25% and 15%, respectively. At higher Hartmann and Rayleigh numbers, the effect of changing the type of magnetic field applied is more notable. By increasing the heat absorption/generation coefficient, the average Nusselt number decreases and the effect of the magnetic field increases. In the heat generation mode, the total entropy generation increases with increasing Hartmann number, while in the heat absorption mode, the opposite effect was obvious. A salient and distinctive feature of the present work compared to previous studies is the application of non-uniform magnetic field (specific type of application) in the presence of heat absorption/generation for non-Newtonian fluids, which is not researched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

B :

Magnetic field strength/T

Be:

Bejan number

c :

Discrete particle speeds for D2Q9/m s1

C p :

Specific heat at constant pressure/kJ kg1 K1

f :

Density distribution function

f eq :

Functions of density distribution/kg m3

F :

External force/N

g :

Energy distribution function/K

g eq :

Equilibrium energy distribution function/K

g :

Acceleration of gravity/m s2

h :

Function of magnetic field distribution/T

h eq :

Magnetic field equilibrium function/T

Ha:

Hartmann number

k :

Thermal conductivity/W m1 K1

L :

Length and height of the chamber/m

q :

Dimensionless heat absorption/generation coefficient

Ra:

Rayleigh number

S :

Entropy generation/kJ kg1 K1

S F :

Entropy generation arising from fluid friction/kJ kg1 K1

S M :

Entropy generation arising from magnetic field/kJ kg1 K1

S T :

Entropy generation arising from heat transfer/kJ kg1 K1

T :

Temperature/K

TMFA:

Type of magnetic field applied

u (u,v):

Velocity components/m s1

x (x,y):

Cartesian coordinates/m

α :

Thermal diffusivity/m2 s1

β :

Thermal expansion coefficient/K1

\(\tau_{\rm f}\) :

Lattice relaxation time for the flow field

\(\tau_{\rm g}\) :

Lattice relaxation time for the temperature field

\(\tau_{\rm h}\) :

Lattice relaxation time for the magnetic field

ρ :

Density/kg m3

υ :

Kinematic viscosity/m2 s1

µ :

Dynamic viscosity/pa s

φ :

Slope of the wall/Degrees

θ :

Dimensionless temperature

γ :

Shear rate/s1

η :

Magnetic resistivity

ψ :

Stream function/m2 s1

ω :

Weighting factor

c:

Cold

h:

Hot

i:

Move direction of single particle

References

  1. Raki E, Afrand M, Abdollahi A. Influence of magnetic field on boiling heat transfer coefficient of a magnetic nanofluid consisting of cobalt oxide and deionized water in nucleate regime: an experimental study. Int J Heat Mass Transf. 2021;165:120669.

    Article  CAS  Google Scholar 

  2. Rostami S, Raki E, Abdollahi A, Goldanlou AS. Effects of different magnetic fields on the boiling heat transfer coefficient of the NiO/deionized water nanofluid, an experimental investigation. Powder Technol. 2020;1(376):398–409.

    Article  Google Scholar 

  3. Chen Z, Liu P, Zare A, Karimipour A, Abdollahi A, Tlili I. Evaluation of thermal conductivity of deionized water containing SDS-coated NiO nanoparticles under the influences ofconstant and alternative varied magnetic fields. Powder Technol. 2020;1(367):143–56.

    Article  Google Scholar 

  4. Barnoon P, Toghraie D, Karimipour A. Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field. J Therm Anal Calorim. 2021;145(6):3301–23.

    Article  CAS  Google Scholar 

  5. Nemati M, Sefid M, Rahmati A. Analysis of the effect of periodic magnetic field, heat absorption/generation and aspect ratio of the enclosure on non-Newtonian natural convection. J Heat Mass Transf Res. 2021;8(2):187–203.

    Google Scholar 

  6. Zheng Y, Zhang X, Nouri M, Amini A, Karimipour A, Hekmatifar M, Sabetvand R, Ngooyen Q, Karimipour A. Atomic rheology analysis of the external magnetic field effects on nanofluid in non-ideal microchannel via molecular dynamic method. J Therm Anal Calorim. 2021;143(2):1655–63.

    Article  CAS  Google Scholar 

  7. Toghraie D. Numerical simulation on MHD mixed convection of Cu-water nanofluid in a trapezoidal lid-driven cavity. Int J Appl Electromagnet Mech. 2020;62(4):683–710.

    Article  Google Scholar 

  8. Kefayati GH, Tang H. Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model. Int J Hydrogen Energy. 2017;42(27):17284–327.

    Article  CAS  Google Scholar 

  9. Nemati M, Sefid M, Rahmati AR. The effect of changing the position of the hot wall and increasing the amplitude and number of oscillations of wavy wall on the flow and heat transfer of nanofluid inside the channel in the presence of magnetic field. J Solid Fluid Mech. 2020;10(2):219–36.

    Google Scholar 

  10. Shahriari A, Ashorynejad HR, Pop I. Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. J Therm Anal Calorim. 2019;135(1):283–303.

    Article  CAS  Google Scholar 

  11. Moshfegh A, Mehrizi AA, Javadzadegan A, Joshaghani M, Ghasemi-Fare O. Numerical investigation of various nanofluid heat transfers in microchannel under the effect of partial magnetic field: lattice Boltzmann approach. J Therm Anal Calorim. 2020;140(2):773–87.

    Article  CAS  Google Scholar 

  12. Nemati M, Mohamadzade H, Sefid M. Investigation the effect of direction of wall movement on mixed convection in porous enclosure with heat absorption/generation and magnetic field. Fluid Mech Aerodyn J. 2020;9(1):99–115.

    Google Scholar 

  13. Anitha S, Thomas T, Parthiban V, Pichumani M. Modeling of Newtonian and non-Newtonian-based coolants for deployment in industrial length-scale shell and tube heat exchanger. Int J Modern Phys C (IJMPC). 2021;32(06):1–24.

    Google Scholar 

  14. Amiri MH, Keshavarzi A, Karimipour A, Bahiraei M, Goodarzi M, Esfahani JA. A 3-D numerical simulation of non-Newtonian blood flow through femoral artery bifurcation with a moderate arteriosclerosis: investigating Newtonian/non-Newtonian flow and its effects on elastic vessel walls. Heat Mass Transf. 2019;55(7):2037–47.

    Article  Google Scholar 

  15. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;15(176):51–67.

    Article  Google Scholar 

  16. Nafchi PM, Karimipour A, Afrand M. The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties. Physica A. 2019;15(516):1–8.

    Article  Google Scholar 

  17. Mallawi FO, Bhuvaneswari M, Sivasankaran S, Eswaramoorthi S. Impact of double-stratification on convective flow of a non-Newtonian liquid in a Riga plate with Cattaneo-Christov double-flux and thermal radiation. Ain Shams Eng J. 2021;12(1):969–81.

    Article  Google Scholar 

  18. Chen Z, Shu C. Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. Int J Numer Meth Fluids. 2020;92(1):38–54.

    Article  CAS  Google Scholar 

  19. Meira RE, De Lai FC, Negrão CO, Junqueira SL. On determining the power-law fluid friction factor in a partially porous channel using the lattice Boltzmann method. Phys Fluids. 2020;32(9):093104.

    Article  CAS  Google Scholar 

  20. Dong B, Zhou X, Zhang Y, Chen C, Li W. Numerical simulation of thermal flow of power-law fluids using lattice Boltzmann method on non-orthogonal grids. Int J Heat Mass Transf. 2018;1(126):293–305.

    Article  Google Scholar 

  21. Qiao Y, Zeng Y, Ding Y, Fan J, Luo K, Zhu T. Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection. Comput Methods Biomech Biomed Engin. 2019;22(6):620–30.

    Article  PubMed  Google Scholar 

  22. Mehdizadeh A, Rahmati A, Sheikhzadeh G. Simulation and comparison of non-Newtonian fluid models using LBM in a cavity. J Heat Mass Transf Res. 2021;8(1):115–25.

    Google Scholar 

  23. Adam S, Premnath KN. Numerical investigation of the cascaded central moment lattice Boltzmann method for non-Newtonian fluid flows. J Non-Newtonian Fluid Mech. 2019;1(274):104188.

    Article  Google Scholar 

  24. Nemati M, Sefid M. Using multiple relaxation time lattice Boltzmann method to simulate power-law fluids MHD natural convection in cavity with lozenge barrier. Fluid Mech Aerodyn J. 2020;10(1):17–35.

    Google Scholar 

  25. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Physica A. 2018;1(509):515–35.

    Article  Google Scholar 

  26. Rahmati AR, Nemati M. Investigation of magnetic field effect on nanofluid mixed convection inside lid-driven k-shaped enclosure using lattice Boltzmann method. J Solid Fluid Mech. 2018;8(1):111–26.

    Google Scholar 

  27. Hossain MS, Alim MA, Andallah LS. Numerical simulation of MHD Natural convection flow within porous trapezoidal cavity with heated triangular obstacle. Int J Appl Comput Math. 2020;6(6):1–27.

    Article  Google Scholar 

  28. Nemati M, Sefid M, Mohamadzade H. The effect of wall shape and aspect ratio on heat transfer non-Newtonian power law fluid in the presence of magnetic field. Iran J Mech Eng Trans ISME. 2021;22(4):116–30.

    Google Scholar 

  29. Sato K, Koshimura S. Validation of the MRT-LBM for three-dimensional free-surface flows: an investigation of the weak compressibility in dam-break benchmarks. Coast Eng J. 2020;62(1):53–68.

    Article  Google Scholar 

  30. Nemati M, Sani HM, Jahangiri R, Sefid M, Mohammad Sajadi S, Baleanu D, Ghaemi F. Convection heat transfer under the effect of uniform and periodic magnetic fields with uniform internal heat generation: a new comprehensive work to develop the ability of the multi relaxation time lattice Boltzmann method. J Therm Anal Calorim. 2021;9:1–5.

    Google Scholar 

  31. Nemati M, Sani HM, Chamkha AJ. Optimal wall natural convection for a non-Newtonian fluid with heat generation/absorption and magnetic field in a quarter-oval inclined cavity. Phys Scr. 2021;96(12):125234.

    Article  Google Scholar 

  32. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019.

    Article  Google Scholar 

  33. Opanuga AA, Adesanya SO, Okagbue HI, Agboola OO. Impact of Hall current on the entropy generation of radiative MHD mixed convection casson fluid. Int J Appl Comput Math. 2020;6(2):1–8.

    Article  Google Scholar 

  34. Ijaz Khan M, Alzahrani F. Numerical simulation for the mixed convective flow of non-Newtonian fluid with activation energy and entropy generation. Math Methods Appl Sci. 2021;44(9):7766–77.

    Article  Google Scholar 

  35. Shehzad SA, Madhu M, Shashikumar NS, Gireesha BJ, Mahanthesh B. Thermal and entropy generation of non-Newtonian magneto-Carreau fluid flow in microchannel. J Therm Anal Calorim. 2021;143(3):2717–27.

    Article  CAS  Google Scholar 

  36. Han L, Lu C, Yumashev A, Bahrami D, Kalbasi R, Jahangiri M, Karimipour A, Band SS, Chau KW, Mosavi A. Numerical investigation of magnetic field on forced convection heat transfer and entropy generation in a microchannel with trapezoidal ribs. Eng Appl Comput Fluid Mech. 2021;15(1):1746–60.

    Google Scholar 

  37. Kashyap D, Dass AK, Oztop HF, Abu-Hamdeh N. Multiple-relaxation-time lattice Boltzmann analysis of entropy generation in a hot-block-inserted square cavity for different Prandtl numbers. Int J Thermal Sci. 2021;1(165):106948.

    Article  Google Scholar 

  38. Rahman A, Nag P, Molla MM, Hassan S. Magnetic field effects on natural convection and entropy generation of non-Newtonian fluids using multiple-relaxation-time lattice Boltzmann method. Int J Mod Phys C. 2021;32(01):2150015.

    Article  CAS  Google Scholar 

  39. Jahanbakhshi A, Nadooshan AA, Bayareh M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. J Therm Anal Calorim. 2018;133(3):1407–16.

    Article  CAS  Google Scholar 

  40. Afsana S, Molla MM, Nag P, Saha LK, Siddiqa S. MHD natural convection and entropy generation of non-Newtonian ferrofluid in a wavy enclosure. Int J Mech Sci. 2021;15(198):106350.

    Article  Google Scholar 

  41. Zhang R, Aghakhani S, Pordanjani AH, Vahedi SM, Shahsavar A, Afrand M. Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method. Eur Phys J Plus. 2020;135(2):184.

    Article  Google Scholar 

  42. Rahimi A, Sepehr M, Lariche MJ, Mesbah M, Kasaeipoor A, Malekshah EH. Analysis of natural convection in nanofluid-filled H-shaped cavity by entropy generation and heatline visualization using lattice Boltzmann method. Physica E. 2018;1(97):347–62.

    Article  Google Scholar 

  43. Li C, Qi C, Ding Z, Wang C, Han D. Lattice Boltzmann simulation on thermal management of electronic components with nonuniform temperature based on nanofluids. Int J Energy Res. 2021;45(11):16667–90.

    Article  Google Scholar 

  44. Purusothaman A. Investigation of natural convection heat transfer performance of the QFN-PCB electronic module by using nanofluid for power electronics cooling applications. Adv Powder Technol. 2018;29(4):996–1004.

    Article  CAS  Google Scholar 

  45. Baudoin A, Saury D, Boström C. Optimized distribution of a large number of power electronics components cooled by conjugate turbulent natural convection. Appl Therm Eng. 2017;1(124):975–85.

    Article  Google Scholar 

  46. De Mey G, Torzewicz T, Kawka P, Czerwoniec A, Janicki M, Napieralski A. Analysis of nonlinear heat exchange phenomena in natural convection cooled electronic systems. Microelectron Reliab. 2016;1(67):15–20.

    Article  Google Scholar 

  47. Li Y, Firouzi M, Karimipour A, Afrand M. Effect of an inclined partition with constant thermal conductivity on natural convection and entropy generation of a nanofluid under magnetic field inside an inclined enclosure: applicable for electronic cooling. Adv Powder Technol. 2020;31(2):645–57.

    Article  CAS  Google Scholar 

  48. Kefayati GR. FDLBM simulation of mixed convection in a lid-driven cavity filled with non-Newtonian nanofluid in the presence of magnetic field. Int J Therm Sci. 2015;1(95):29–46.

    Article  Google Scholar 

  49. Nemati H, Farhadi M, Sedighi K, Ashorynejad HR, Fattahi EJ. Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model. Sci Iran. 2012;19(2):303–10.

    Article  Google Scholar 

  50. Hussein AK, Ashorynejad HR, Shikholeslami M, Sivasankaran S. Lattice Boltzmann simulation of natural convection heat transfer in an open enclosure filled with Cu–water nanofluid in a presence of magnetic field. Nucl Eng Des. 2014;1(268):10–7.

    Article  Google Scholar 

  51. Bararnia H, Soleimani S, Ganji DD. Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure. Int Commun Heat Mass Transfer. 2011;38(10):1436–42.

    Article  Google Scholar 

  52. Javaherdeh K, Ashorynejad HR. Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Adv Powder Technol. 2014;25(2):666–75.

    Article  Google Scholar 

  53. Guo X, Chai Z, Pang S, Zhao Y, Shi B. Mixed bounce-back boundary scheme of the general propagation lattice Boltzmann method for advection-diffusion equations. Phys Rev E. 2019;99(6):063316.

    Article  CAS  PubMed  Google Scholar 

  54. Dubois F, Lallemand P, Tekitek MM. Generalized bounce back boundary condition for the nine velocities two-dimensional lattice Boltzmann scheme. Comput Fluids. 2019;193:103534.

    Article  Google Scholar 

  55. Safa R, Soltani Goharrizi A, Jafari S, Jahanshahi JE. Investigation of double-diffusive mixed convection effect on the particles dissolution in the shear flow using coupled SPM–LBM. J Therm Anal Calorim. 2021;144(6):2497–514.

    Article  CAS  Google Scholar 

  56. Ferhi M, Djebali R, Al-Kouz W, Abboudi S, Chamkha AJ. MHD conjugate heat transfer and entropy generation analysis of MWCNT/water nanofluid in a partially heated divided medium. Heat Transfer. 2021;50(1):126–44.

    Article  Google Scholar 

  57. Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transfer. 2008;35(6):696–703.

    Article  CAS  Google Scholar 

  58. Khezzar L, Siginer D, Vinogradov I. Natural convection of power law fluids in inclined cavities. Int J Therm Sci. 2012;1(53):8–17.

    Article  Google Scholar 

  59. Kefayati GR. Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity. Chem Eng Res Des. 2015;1(94):337–54.

    Article  Google Scholar 

  60. Nemati M, Jahangiri R, Khalilian M. Analysis of heat transfer in the cavity with different shapes filled nanofluid in the presence of magnetic field with heat generation/absorption using LBM. J Mech Eng Vib. 2020;10(4):51–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, M., Sefid, M., Mohammad Sajadi, S. et al. Lattice Boltzmann method to study free convection and entropy generation of power-law fluids under influence of magnetic field and heat absorption/generation. J Therm Anal Calorim 147, 10569–10594 (2022). https://doi.org/10.1007/s10973-022-11271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11271-1

Keywords

Navigation