Skip to main content
Log in

Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Analyzing microchannel heat sinks (MCHS) in terms of the second thermodynamic law is useful, and it is necessary to examine MCHSs in terms of irreversible factors. In this research, the second thermodynamic law analysis is conducted for graphene–platinum/water hybrid nanofluid flow to assess how a new cylindrical microchannel heat sink has wavy-shaped fins performs. A variety of Reynolds numbers, nanoparticle concentrations as well as wave amplitudes are used to simulate the problem, while the heat flux is constant. Fluent software is employed to solve the governing equations employing the control-volume method. The distributions of velocity and temperature are derived, and the entropy generation rate (including the generation of thermal as well as frictional entropy), along with the Bejan number, is obtained. The minimum values corresponding to the pointed parameters are, respectively, obtained as 7.63 × 10−2, 1.24 × 10−4, and 7.78 × 10−2, while the maximum magnitudes are 1.09 × 10−1, 1.49 × 10−3, and 1.09 × 10−1, respectively. Increasing each factor, including wave amplitude, particle fraction, and Reynolds number, causes a decline in the thermal entropy generation rate, while frictional entropy rises significantly. The Bejan number was obtained greater than 0.98 in all cases, which means that irreversibility mainly results from the thermal entropy generation. This could be a desirable finding, noting that increasing input variables reduced the thermal entropy generation rate. Finally, by employing an artificial neural network, a model is obtained for the entropy generation of entropy based on distinct factors of wave amplitude, nanofluid concentration, and Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5: a
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Abbreviations

A :

Wave amplitude (m)

ANN:

Artificial neural network

Be:

Bejan number

C p :

Specific heat capacity (J kg−1 K−1)

d h :

Hydraulic diameter (m)

EG:

Entropy generation

f :

Friction factor

H :

Height (m)

HNF:

Hybrid nanofluid

k :

Thermal conductivity (W m−1 K−1)

L :

Length (m)

N :

Number of fins

Nu:

Nusselt number

P :

Pressure (Pa)

q″ :

Heat flux (W m−2)

R :

Radius (m)

Re:

Reynolds number

R Th :

Thermal resistance (K W−1)

\(\dot{S}\) :

Entropy generation (EG) rate (W K−1)

T :

Temperature (K)

V :

Velocity (m s−1)

W :

Width (m)

z :

Axial distance from inlet (m)

ave:

Average

c:

Channel

in:

Inlet

out:

Outlet

s:

Solid

w:

Wall

λ :

Wave length (m)

μ :

Dynamic viscosity (Pa s)

ρ :

Density (kg m−3)

φ:

Concentration (mass%)

References

  1. Khosravi R, Teymourtash AR, Fard MP, Rabiei S, Bahiraei M. Numerical study and optimization of thermohydraulic characteristics of a graphene–platinum nanofluid in finned annulus using genetic algorithm combined with decision-making technique. Eng Comput. 2020: 1–19.

  2. Sarafraz M, Arya H, Arjomandi M. Thermal and hydraulic analysis of a rectangular microchannel with gallium-copper oxide nano-suspension. J Mol Liq. 2018;263:382–9.

    Article  CAS  Google Scholar 

  3. Sarafraz M, Hart J, Shrestha E, Arya H, Arjomandi M. Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10 Hz/50 Hz) resonator. Appl Therm Eng. 2019;148:578–90.

    Article  CAS  Google Scholar 

  4. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2:126–9.

    Article  Google Scholar 

  5. Ghani IA, Sidik NAC, Kamaruzaman N. Hydrothermal performance of microchannel heat sink: the effect of channel design. Int J Heat Mass Transf. 2017;107:21–44.

    Article  Google Scholar 

  6. Gunnasegaran P, Mohammed HA, Shuaib NH, Saidur R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transf. 2010;37:1078–86.

    Article  Google Scholar 

  7. Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng. 2016;107:870–9.

    Article  Google Scholar 

  8. Azizi Z, Alamdari A, Malayeri MR. Convective heat transfer of Cu–water nanofluid in a cylindrical microchannel heat sink. Energy Convers Manag. 2015;101:515–24.

    Article  CAS  Google Scholar 

  9. Azizi Z, Alamdari A, Malayeri M. Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu-water nanofluid. Appl Therm Eng. 2016;99:970–8.

    Article  CAS  Google Scholar 

  10. Abdulqadur AA, Jaffal HM, Khudhur DS. Performance optimiation of a cylindrical mini-channel heat sink using hybrid straight–wavy channel. Int J Therm Sci. 2019;146:106111.

  11. Khalifa MA, Jaffal HM. Effects of channel configuration on hydrothermal performance of the cylindrical mini-channel heat sinks. Appl Therm Eng. 2019;148:1107–30.

    Article  Google Scholar 

  12. Khosravi R, Rabiei S, Bahiraei M, Teymourtash A. Predicting entropy generation of a hybrid nanofluid containing graphene–platinum nanoparticles through a microchannel liquid block using neural networks. Int Commun Heat Mass Transf. 2019;109:104351.

    Article  CAS  Google Scholar 

  13. Dominic A, Sarangan J, Suresh S, Devah Dhanush V. An experimental investigation of wavy and straight minichannel heat sinks using water and nanofluids. J Therm Sci Eng Appl. 2015;7:031012.

    Article  CAS  Google Scholar 

  14. Lu G, Zhao J, Lin L, Wang X-D, Yan W-M. A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins. Int J Heat Mass Transf. 2017;111:1071–8.

    Article  CAS  Google Scholar 

  15. Mohammed H, Gunnasegaran P, Shuaib N. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int Commun Heat Mass Transf. 2011;38:63–8.

    Article  Google Scholar 

  16. Bayrak E, Olcay AB, Serincan MF. Numerical investigation of the effects of geometric structure of microchannel heat sink on flow characteristics and heat transfer performance. Int J Therm Sci. 2019;135:589–600.

    Article  CAS  Google Scholar 

  17. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim. 2019;136:1333–45.

    Article  CAS  Google Scholar 

  18. Ghalandari M, Maleki A, Haghighi A, Shadloo MS, Nazari MA, Tlili I. Applications of nanofluids containing carbon nanotubes in solar energy systems: a review. J Mol Liq. 2020;313:113476.

    Article  CAS  Google Scholar 

  19. Mohseni-Gharyehsafa B, Ebrahimi-Moghadam A, Okati V, Farzaneh-Gord M, Ahmadi MH, Lorenzini G. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2019;135:801–11.

    Article  CAS  Google Scholar 

  20. Sarafraz M, Silakhori M, Madani S, Kiamahalleh M, Pourmehran O. Thermal and hydraulic performance of a heat exchanger working with carbon-water nanofluid. Heat Mass Transf. 2019;55:3443–53.

    Article  CAS  Google Scholar 

  21. Raza M, Ellahi R, Sait SM, Sarafraz M, Shadloo MS, Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim. 2019;140:1–15.

    Google Scholar 

  22. Eshgarf H, Kalbasi R, Maleki A, Shadloo MS. A review on the properties, preparation, models and stability of hybrid nanofluids to optimize energy consumption. J Therm Anal Calorim. 2020: 1–25.

  23. Kumar V, Sarkar J. Two-phase numerical simulation of hybrid nanofluid heat transfer in minichannel heat sink and experimental validation. Int Commun Heat Mass Transf. 2018;91:239–47.

    Article  CAS  Google Scholar 

  24. Sarafraz MM, Safaei MR, Tian Z, Goodarzi M, Bandarra Filho EP, Arjomandi M. Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60: 40) nano-suspension in a compact heat exchanger. Energies. 2019;12(10):1929. https://doi.org/10.3390/en12101929.

    Article  CAS  Google Scholar 

  25. Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;273:88–98.

    Article  CAS  Google Scholar 

  26. Yang L, Huang J-N, Mao M, Ji W. Numerical assessment of Ag-water nanofluid flow in two new microchannel heatsinks: thermal performance and thermodynamic considerations. Int Commun Heat Mass Transf. 2020;110:104415.

    Article  CAS  Google Scholar 

  27. Al-Rashed AA, Ranjbarzadeh R, Aghakhani S, Soltanimehr M, Afrand M, Nguyen TK. Entropy generation of boehmite alumina nanofluid flow through a minichannel heat exchanger considering nanoparticle shape effect. Physica A. 2019;521:724–36.

    Article  CAS  Google Scholar 

  28. Shahsavar A, Baseri MM, Al-Rashed AA, Afrand M. Numerical investigation of forced convection heat transfer and flow irreversibility in a novel heatsink with helical microchannels working with biologically synthesized water-silver nanofluid. Int Commun Heat Mass Transf. 2019;108:104324.

    Article  CAS  Google Scholar 

  29. Ebrahimi-Moghadam A, Moghadam AJ. Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods. Appl Therm Eng. 2019;149:889–98.

    Article  CAS  Google Scholar 

  30. Shadloo MS. Application of support vector machines for accurate prediction of convection heat transfer coefficient of nanofluids through circular pipes. Int J Numer Methods Heat Fluid Flow. 2020.

  31. Esmaeilzadeh A, Silakhori M, Nik Ghazali NN, Metselaar HSC, Bin Mamat A, Naghavi Sanjani MS, et al. Thermal performance and numerical simulation of the 1-pyrene carboxylic-acid functionalized graphene nanofluids in a sintered wick heat pipe. Energies. 2020;13:6542.

    Article  CAS  Google Scholar 

  32. Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng. 2019;7:1649–58.

    Article  Google Scholar 

  33. Shadloo MS, Rahmat A, Karimipour A, Wongwises S. Estimation of pressure drop of two-phase flow in horizontal long pipes using artificial neural networks. J Energy Resour Technol. 2020;142:112110.

    Article  Google Scholar 

  34. Zheng Y, Shadloo MS, Nasiri H, Maleki A, Karimipour A, Tlili I. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew Energy. 2020;153:1296–306.

    Article  CAS  Google Scholar 

  35. Ahmadi MH, Sadeghzadeh M, Raffiee AH, Chau K-W. Applying GMDH neural network to estimate the thermal resistance and thermal conductivity of pulsating heat pipes. Eng Appl Comput Fluid Mech. 2019;13:327–36.

    Google Scholar 

  36. Ghazvini M, Maddah H, Peymanfar R, Ahmadi MH, Kumar R. Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Physica A. 2020;551:124127

    Article  CAS  Google Scholar 

  37. Ebrahimi-Moghadam A, Mohseni-Gharyehsafa B, Farzaneh-Gord M. Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector. Renew Energy. 2018;129:473–85.

    Article  CAS  Google Scholar 

  38. Maddah H, Ghazvini M, Ahmadi MH. Predicting the efficiency of CuO/water nanofluid in heat pipe heat exchanger using neural network. Int Commun Heat Mass Transf. 2019;104:33–40.

    Article  CAS  Google Scholar 

  39. Sakanova A, Keian CC, Zhao J. Performance improvements of microchannel heat sink using wavy channel and nanofluids. Int J Heat Mass Transf. 2015;89:59–74.

    Article  CAS  Google Scholar 

  40. Ghule K, Soni M. Numerical heat transfer analysis of wavy micro channels with different cross sections. Energy Procedia. 2017;109:471–8.

    Article  Google Scholar 

  41. Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, et al. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21.

    Article  CAS  Google Scholar 

  42. Bahiraei M, Mazaheri N. Application of a novel hybrid nanofluid containing graphene–platinum nanoparticles in a chaotic twisted geometry for utilization in miniature devices: thermal and energy efficiency considerations. Int J Mech Sci. 2018;138:337–49.

    Article  Google Scholar 

  43. Hajmohammadi M, Alipour P, Parsa H. Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks. Int J Heat Mass Transf. 2018;126:808–15.

    Article  CAS  Google Scholar 

  44. Morini GL. Viscous heating in liquid flows in micro-channels. Int J Heat Mass Transf. 2005;48:3637–47.

    Article  CAS  Google Scholar 

  45. Radwan A, Ahmed M, Ookawara S. Performance enhancement of concentrated photovoltaic systems using a microchannel heat sink with nanofluids. Energy Convers Manag. 2016;119:289–303.

    Article  CAS  Google Scholar 

  46. Bejan A. A study of entropy generation in fundamental convective heat transfer. J Heat Transf. 1979;101:718–25.

    Article  Google Scholar 

  47. Lin L, Zhao J, Lu G, Wang X-D, Yan W-M. Heat transfer enhancement in microchannel heat sink by wavy channel with changing wavelength/amplitude. Int J Therm Sci. 2017;118:423–34.

    Article  Google Scholar 

  48. Kays WM. Convective heat and mass transfer. New York: Tata McGraw-Hill Education; 2012.

    Google Scholar 

  49. Sun Z, Sun L, Yan C, Huang W. Experimental investigation of single-phase flow friction in narrow annuli. Nucl Power Eng. 2004;25:123–7.

    Google Scholar 

  50. Khosravi R, Rabiei S, Bahiraei M, Teymourtash AR. Predicting entropy generation of a hybrid nanofluid containing graphene–platinum nanoparticles through a microchannel liquid block using neural networks. Int Commun Heat Mass Transf. 2019;109:104351.

    Article  CAS  Google Scholar 

  51. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, et al. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:e119–23.

    Article  Google Scholar 

  52. Maleki A, Safdari Shadloo M, Rahmat A. Application of artificial neural networks for producing an estimation of high-density polyethylene. Polymers. 2020;12:2319.

    Article  CAS  PubMed Central  Google Scholar 

  53. Rabiei S, Khosravi R, Bahiraei M, Raziei M, Hosseini AA. Thermal and hydraulic characteristics of a hybrid nanofluid containing graphene sheets decorated with platinum through a new wavy cylindrical microchannel. Appl Therm Eng. 2020;181:115981.

    Article  CAS  Google Scholar 

  54. Yigit KS, Ertunc HM. Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks. Int Commun Heat Mass Transf. 2006;33:898–907.

    Article  CAS  Google Scholar 

  55. Düğenci M, Aydemir A, Esen İ, Aydın ME. Creep modelling of polypropylenes using artificial neural networks trained with Bee algorithms. Eng Appl Artif Intell. 2015;45:71–9.

    Article  Google Scholar 

  56. Tafarroj MM, Mahian O, Kasaeian A, Sakamatapan K, Dalkilic AS, Wongwises S. Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data. Int Commun Heat Mass Transf. 2017;86:25–31.

    Article  CAS  Google Scholar 

  57. Jalali E, Ali Akbari O, Sarafraz MM, Abbas T, Safaei MR. Heat transfer of oil/MWCNT nanofluid jet injection inside a rectangular microchannel. Symmetry. 2019;11(6):757. https://doi.org/10.3390/sym11060757.

    Article  CAS  Google Scholar 

  58. Pinto RV, Fiorelli FAS. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng. 2016;108:720–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Goodarzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, R., Rabiei, S., Khaki, M. et al. Entropy generation of graphene–platinum hybrid nanofluid flow through a wavy cylindrical microchannel solar receiver by using neural networks. J Therm Anal Calorim 145, 1949–1967 (2021). https://doi.org/10.1007/s10973-021-10828-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10828-w

Keywords

Navigation