Skip to main content
Log in

Monitoring Opportunities in Fiber Laser Flame Cutting

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Triggered by smart and zero-defect manufacturing paradigms, in situ quality assurance has become an emerging necessity for industrial laser cutting. Within this work, several real-time monitoring concepts have been tested for 4 kW Ytterbium fiber laser flame cutting of 15 mm mild steel plates. Cut quality deteriorations caused by cutting at varying speeds as well as by the preheating effect are examined. While plate preheating arises as an unavoidable side effect of laser flame cutting of thick plates, cutting speed can be leveraged to increase productivity in an industrial setting. However, distinguishing between the quality deteriorations caused by both phenomena can be challenging on the basis of a single monitoring signal. For this purpose, three different strategies, namely the use of a coaxial multi-sensor system, an emissivity quotient goniometer and off-axis thermal imaging, are explored. The paper takes a close look at these strategies through three different case studies. For each case, the correlation between cut quality aspects and sensor signals is investigated. Additionally, a discussion of the requirements for the implementation of each strategy in an industrial laser cutting machine is provided. It is concluded that a combination of strategies can provide sufficient information for both increasing productivity and edge quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Tamura, K., Ishigami, R., Yamagishi, R.: Laser cutting of thick steel plates and simulated steel components using a 30 kW fiber laser. J. Nucl. Sci. Technol. 53, 916–920 (2016). https://doi.org/10.1080/00223131.2015.1080633

    Article  Google Scholar 

  2. Powell, J., Kaplan, A.F.H.: A technical and commercial comparison of fiber laser and CO2 laser cutting. In: Proceedings of the 31st International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Anaheim, 23-27 September 2012: (Laser Inst. of America, Orlando, Florida, USA, 2012), 277-281 (2012). https://doi.org/10.2351/1.5062456

  3. Lee, J., Park, H.J., Chai, S., Kim, G.R., Yong, H., Bae, S.J., Kwon, D.: Review on quality control methods in metal additive manufacturing. Appl. Sci. 11, 1966 (2021). https://doi.org/10.3390/app11041966

    Article  Google Scholar 

  4. Cai, W., Wang, J.Z., Jiang, P., Cao, L.C., Mi, G.Y., Zhou, Q.: Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature. J. Manuf. Syst. 57, 1–18 (2020). https://doi.org/10.1016/j.jmsy.2020.07.021

    Article  Google Scholar 

  5. Liu, S., Farahmand, P., Kovacevic, R.: Optical monitoring of high power direct diode laser cladding. Opt. Laser Technol. 64, 363–376 (2014). https://doi.org/10.1016/j.optlastec.2014.06.002

    Article  Google Scholar 

  6. De Keuster, J., Duflou, J.R., Kruth, J.-P.: Monitoring of high-power CO2 laser cutting by means of an acoustic microphone and photodiodes. Int. J. Adv. Manuf. Technol. 35, 115–126 (2007). https://doi.org/10.1007/s00170-006-0695-z

    Article  Google Scholar 

  7. Dubrov, A.V., Dubrov, V.D., Zavalov, Y.N., Panchenko, V.Y.: Application of optical pyrometry for on-line monitoring in laser-cutting technologies. Appl. Phys. B. 105, 537–543 (2011). https://doi.org/10.1007/s00340-011-4611-3

    Article  Google Scholar 

  8. Levichev, N., Costa Rodrigues, G, Duflou, J.R.: Real-time monitoring of fiber laser cutting of thick plates by means of photodiodes. Procedia CIRP. 94, 499–504 (2020). https://doi.org/10.1016/j.procir.2020.09.171

    Article  Google Scholar 

  9. Vaamonde, E., Panadeiro, V., Gonzalez, C., Arias, J.L.: On-Line Quality Monitoring System for Multi-Functional Laser-Based Processing Based on Embedded VIS and MWIR Computer Vision. In: Proceedings of the 38th International Congress on Applications of Lasers & Electro-Optics, Orlando, 7-10 October 2019: (Laser Inst. of America, Orlando, Florida, USA, 2019), 1304 (2019)

  10. Pacher, M., Franceschetti, L., Strada, S.C., Tanelli, M., Savaresi, S.M., Previtali, B.: Real-time continuous estimation of dross attachment in the laser cutting process based on process emission images. J. Laser Appl. 32, 042016 (2020). https://doi.org/10.2351/7.0000145

    Article  Google Scholar 

  11. Levichev, N., Costa Rodrigues, G., Vorkov, V., Duflou, J.R.: Coaxial camera-based monitoring of fiber laser cutting of thick plates. Opt. Laser Technol. 136, 106743 (2021). https://doi.org/10.1016/j.optlastec.2020.106743

    Article  Google Scholar 

  12. Adelmann, B., Schleier, M., Hellmann, R.: Laser Cut Interruption Detection from Small Images by Using Convolutional Neural Network. Sens. 21(2), 655 (2021). https://doi.org/10.3390/s21020655

    Article  Google Scholar 

  13. Scintilla, L.D., Tricarico, L., Mahrle, A., Wetzig, A., Beyer, E.: Experimental investigation on the cut front geometry in the inert gas laser fusion cutting with disk and CO2 lasers. In: Proceedings of the 30th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Orlando, 23-27 October 2011: (Laser Inst. of America, Orlando, Florida, USA, 2011), 40-49 (2011). https://doi.org/10.2351/1.5062266

  14. Duflou, J.R., Fallahi Sichani, E., De Keuster, J., Kruth, J.-P.: Development of a real time monitoring and adaptive control system for laser flame cutting. In: Proceedings of the 28th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Orlando, 2-5 November 2009: (Laser Inst. of America, Orlando, Florida, USA, 2009), 527-536 (2009). https://doi.org/10.2351/1.5061606

  15. Levichev, N., Costa Rodrigues, G., Dewil, R., Duflou, J.R.: Anticipating heat accumulation in laser oxygen cutting of thick metal plates J. Laser Appl. 32, 022018 (2020). https://doi.org/10.2351/7.0000052

    Article  Google Scholar 

  16. Powell, J., Petring, D., Kumar, R.V., Al-Mashikhi, S.O., Kaplan, A.F.H., Voisey, K.T.: Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction. J. Phys. D. 42(1), 015504 (2009). https://doi.org/10.1088/0022-3727/42/1/015504

    Article  Google Scholar 

  17. Tomás García, A., Levichev, N., Vorkov, V., Cattrysse, D., Duflou, J.R.: Towards Automatic Part Identification in Sheet Metal Workshops. Key Eng. Mater. 883, 167–174 (2021). https://doi.org/10.4028/www.scientific.net/KEM.883.167

    Article  Google Scholar 

  18. Goppold, C., Urlau, F., Pinder, T., Herwig, P., Lasagni, A.F.: Experimental investigation of cutting performance for different material compositions of Cr/Ni-steel with 1 µm laser radiation. J. Laser Appl. 30, 031501 (2018). https://doi.org/10.2351/1.5013284

    Article  Google Scholar 

  19. Gao, X., Sun, Y., You, D., Xiao, Z., Chen, X.: Multi-sensor information fusion for monitoring disk laser welding. Int. J. Adv. Manuf. Technol. 85, 1167–1175 (2016). https://doi.org/10.1007/s00170-015-8032-z

    Article  Google Scholar 

  20. Peng, X., Kong, L., Chen, Y., Shan, Z., Qi, L.: Design of a Multi-sensor Monitoring System for Additive Manufacturing Process. Nanomanuf. Metrol. 3, 142–150 (2020). https://doi.org/10.1007/s41871-020-00062-7

    Article  Google Scholar 

  21. Levichev, N., Duflou, J.R.: On multi-sensor monitoring of fiber laser fusion cutting. IOP Conference Series: Materials Science and Engineering: (2022) (accepted)

  22. Levichev, N., Staudt, T., Schmidt, M., Duflou, J.R.: Hyperspectral imaging and trim-cut visualization of laser cutting. CIRP Ann. Manuf. Technol. 70(1), 207–210 (2021). https://doi.org/10.1016/j.cirp.2021.04.015

    Article  Google Scholar 

  23. Bocksrocker, O., Berger, P., Regaard, B., Rominger, V., Graf, T.: Characterization of the melt flow direction and cut front geometry in oxygen cutting with a solid state laser. J. Laser Appl. 29, 022202 (2017). https://doi.org/10.2351/1.4983262

    Article  Google Scholar 

  24. Sobih, M., Crouse, P.L., Li, L.: Elimination of striation in laser cutting of mild steel. J. Phys. D. 40, 6908–6916 (2007). https://doi.org/10.1088/0022-3727/40/22/009

    Article  Google Scholar 

  25. Weberpals, J.-P., Berger, P., Graf, T., Trein, J., Singpiel, H.: Novel monitoring system for spatially resolved topographical measurement of laser-based processes. In: Proceedings of the 30th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing, Orlando, 23-27 October 2011: (Laser Inst. of America, Orlando, Florida, USA, 2011), 95–103 (2011). https://doi.org/10.2351/1.5062355

  26. Bocksrocker, O., Berger, P., Hesse, T., Boley, M., Graf, T.: Measurement of the laser cut front geometry. In: Proceedings of 8th International WLT Conference on Lasers in Manufacturing LiM, Munich, 22–25 June: 2015, 1–8 (2015)

  27. Mahrle, A., Beyer, E.: Theoretical aspects of fibre laser cutting. J. Phys. D. 42, 175507 (2009). https://doi.org/10.1088/0022-3727/42/17/175507

    Article  Google Scholar 

  28. Pocorni, J., Powell, J., Deichsel, E., Frostevarg, J., Kaplan, A.F.H.: Fibre laser cutting stainless steel: Fluid dynamics and cut front morphology. Opt. Laser Technol. 87, 87–93 (2017). https://doi.org/10.1016/j.optlastec.2016.08.002

    Article  Google Scholar 

  29. Levichev, N., Costa Rodrigues, G., Tomás García, A., Duflou, J.R.: Trim-cut technique for analysis of melt flow dynamics in industrial laser cutting machine. Procedia CIRP. 95, 858–863 (2020). https://doi.org/10.1016/j.procir.2020.01.157

    Article  Google Scholar 

  30. Hajad, M., Tangwarodomnukun, V., Jaturanonda, C., Dumkum, C.: Laser cutting path optimization with minimum heat accumulation. Int. J. Adv. Manuf. Technol. 105, 2569–2579 (2019). https://doi.org/10.1007/s00170-019-04455-x

    Article  Google Scholar 

  31. Kledwig, C., Hofer, M., Reisacher, M., Brückner, F., Bliedtner, J., Leyens, C.: A study on the accuracy of thermography-based temperature measurement in powder-fed directed energy deposition. Procedia CIRP. 95, 35–41 (2020). https://doi.org/10.1016/j.procir.2020.02.251

    Article  Google Scholar 

  32. Fallahi Sichani, E., Kohl, S., Duflou, J.R.: Plasma detection and control requirements for CO2 laser cutting. CIRP Ann. Manuf. Technol. 62, 215–218 (2013). https://doi.org/10.1016/j.cirp.2013.03.029

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nikita Levichev: Conceptualization, Data curation, Methodology, Investigation, Formal analysis, Visualization, Writing – Original Draft;

Alberto Tomás García: Investigation, Software, Formal analysis, Writing – Review & Editing;

Joost R. Duflou: Data curation, Supervision, Writing – Review & Editing.

Corresponding author

Correspondence to Nikita Levichev.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levichev, N., Tomás García, A. & Duflou, J.R. Monitoring Opportunities in Fiber Laser Flame Cutting. Lasers Manuf. Mater. Process. 8, 491–510 (2021). https://doi.org/10.1007/s40516-021-00158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-021-00158-y

Keywords

Navigation