Skip to main content

Advertisement

Log in

Current Insights into Signature MicroRNA Networks and Signal Transduction in Osteosarcoma

  • Review
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Osteosarcoma is one of the most common types of primary bone tumors that mainly occurs in children and adolescents. It is characterized by the development of immature bones or osteoid tissue by the tumor cells. Osteosarcoma is also often caused by metastatic tumors, and has a high global incidence. Treatment strategies are limited by the intractable nature of the disease and the likelihood for metastasis.

Recent Findings

MicroRNAs (miRNAs) are a class of noncoding RNAs composed of 18–24 nucleotides that are major components for various biological processes like cell differentiation, cell growth, and cell death. Dysregulation of miRNAs in cells leads to altered gene expression leading to several phenotypic and genotypic changes in cells which initiate and promote carcinogenesis. Several miRNAs are involved in the pathogenesis of osteosarcoma thereby affecting the prognosis for the patient. These miRNAs, when altered, have the ability to function either as oncogenes or as tumor suppressor genes. We discuss osteosarcoma in the light of dysregulated miRNA signature networks and their biomarker targets and the delineation of miRNA-target interactions in osteosarcoma. We also elucidate key signal transduction pathways that are modulated by miRNAs in osteosarcoma. Further, we summarize dysregulated osteosarcoma miRNAs that play key role(s) in other pediatric tumors.

Summary

Taken together, we present an overview of the architecture of signature miRNA networks in osteosarcoma and provide a mechanistic basis to augment our understanding of miRNA regulation in osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: Current treatment and a collaborative pathway to success. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(27):3029–35.

    Article  CAS  Google Scholar 

  2. Miwa S, Shirai T, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, et al. Current and emerging targets in immunotherapy for osteosarcoma. J Oncol. 2019;2019:7035045.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  4. Primary Bone Cancer - NCI [Internet]. 2018 [cited 2022 Oct 3]. Available from: https://www.cancer.gov/types/bone/bone-fact-sheet. Accessed 25 Sept 2022.

  5. Bukhari MH, Qamar S, Batool F, Bukhari MH, Qamar S, Batool F. Differential diagnosis of osteogenic tumors in the context of osteosarcoma [Internet]. Osteosarcoma – Diagn Mech Transl Dev. IntechOpen; 2019 [cited 2022 Oct 3]. Available from: https://www.intechopen.com/state.item.id. Accessed 25 Sept 2022.

  6. Clinic M. Osteosarcoma - symptoms and causes. Mayo Clin [Internet]. 2022. Available from: https://www.mayoclinic.org/diseases-conditions/osteosarcoma/symptomscauses/syc-20351052. Accessed 25 Sept 2022.

  7. Bernstein S, Dumain T. Osteosarcoma. WebMD [Internet]. 2020. Available from: https://www.webmd.com/cancer/what-is-osteosarcoma. Accessed 25 Sept 2022.

  8. Ghadirian P, Fathie K, Emard JF. Epidemiology of bone cancer: An overview, American Academy of Neurological and Orthopaedic Surgeons. 2014. Available from: https://aanos.org/epidemiology-of-bone-cancer-an-overview/#:{\textasciitilde}:text=According%20to%20the%20U.S.%20Surveillance%2C%20Epidemiology%20and%20End,periods%20of%20life%2C%20during%20adolescence%20and%20old%20age. Accessed 25 Septe 2022.

  9. Registry S. United States surveillance, epidemiology and end results (SEER) registry. 2022. Available from: https://seer.cancer.gov/statfacts/html/bones.html. Accessed 25 Sept 2022.

  10. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115(7):1531–43.

    Article  PubMed  Google Scholar 

  11. Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett DLH, Bouhassira D, et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain. 2016;157(8):1599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clinic M. Osteosarcoma - Diagnosis and treatment-. 2022. Available from: https://www.mayoclinic.org/diseases-conditions/osteosarcoma/diagnosis-treatment/drc-20351053. Accessed 25 Sept 2022.

  13. Society AC. What’s new in osteosarcoma research? 2020. Available from: https://www.cancer.org/cancer/osteosarcoma/about/new-research.html. Accessed 25 Sept 2022.

  14. Society AC. Chemotherapy and other drugs for osteosarcoma. 2020. Available from: https://www.cancer.org/cancer/osteosarcoma/treating/chemotherapy.html.

  15. Zhang Y, Yang J, Zhao N, Wang C, Kamar S, Zhou Y, et al. Progress in the chemotherapeutic treatment of osteosarcoma. Oncol Lett. 2018;16(5):6228–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Erson-Bensan AE. Introduction to microRNAs in biological systems. Methods Mol Biol Clifton NJ. 2014;1107:1–14.

    Article  CAS  Google Scholar 

  17. Ranganathan K, Sivasankar V. MicroRNAs - Biology and clinical applications. J Oral Maxillofac Pathol JOMFP. 2014;18(2):229–34.

    Article  PubMed  Google Scholar 

  18. Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics. 2010;11(7):537–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2013;34(4):2093–8.

    Article  CAS  Google Scholar 

  20. Society AC. Survival rates for osteosarcoma. 2020. Available from: https://www.cancer.org/cancer/osteosarcoma/detection-diagnosis-staging/survival-rates.html. Accessed 28 Sept 2022.

  21. Zhang J, Yan YG, Wang C, Zhang SJ, Yu XH, Wang WJ. MicroRNAs in osteosarcoma. Clin Chim Acta Int J Clin Chem. 2015;15(444):9–17.

    Article  Google Scholar 

  22. Shi XY, Wang H, Wang W, Gu YH. MiR-98-5p regulates proliferation and metastasis of MCF-7 breast cancer cells by targeting Gab2. Eur Rev Med Pharmacol Sci. 2020;24(21):10914.

    PubMed  Google Scholar 

  23. Wang Y, Bao W, Liu Y, Wang S, Xu S, Li X, et al. miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis. 2018;9(5):1–17.

    Article  Google Scholar 

  24. Fu Y, Liu X, Chen Q, Liu T, Lu C, Yu J, et al. Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. J Exp Clin Cancer Res. 2018;37(1):130.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liao S, Xing S, Ma Y. LncRNA SNHG16 sponges miR-98-5p to regulate cellular processes in osteosarcoma. Cancer Chemother Pharmacol. 2019;83(6):1065–74.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao F, Pu Y, Cui M, Wang H, Cai S. MiR-20a-5p represses the multi-drug resistance of osteosarcoma by targeting the SDC2 gene. Cancer Cell Int. 2017;17:100.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, et al. Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget. 2017;8(20):33375–92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zheng S, Jiang F, Ge D, Tang J, Chen H, Yang J, et al. LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed Pharmacother Biomedecine Pharmacother. 2019;112:108695.

    Article  CAS  Google Scholar 

  29. Zhu T, Fan D, Ye K, Liu B, Cui Z, Liu Z, et al. Role of miRNA-542-5p in the tumorigenesis of osteosarcoma. FEBS Open Bio. 2020;10(4):627–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu M, Zhang YY, Wang HF, Yang GS. The expression and function of miRNA-106 in pediatric osteosarcoma. Eur Rev Med Pharmacol Sci. 2017;21(4):715–22.

    CAS  PubMed  Google Scholar 

  31. Lin Z, Song D, Wei H, Yang X, Liu T, Yan W, et al. TGF-β1-induced miR-202 mediates drug resistance by inhibiting apoptosis in human osteosarcoma. J Cancer Res Clin Oncol. 2016;142(1):239–46.

    Article  CAS  PubMed  Google Scholar 

  32. Li C, Ma D, Yang J, Lin X, Chen B. miR-202-5p inhibits the migration and invasion of osteosarcoma cells by targeting ROCK1. Oncol Lett. 2018;16(1):829–34.

    PubMed  PubMed Central  Google Scholar 

  33. Chen J, Yan D, Wu W, Zhu J, Ye W, Shu Q. MicroRNA-130a promotes the metastasis and epithelial-mesenchymal transition of osteosarcoma by targeting PTEN. Oncol Rep. 2016;35(6):3285–92.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao D, Chen Y, Chen S, Zheng C, Hu J, Luo S. MiR-19a regulates the cell growth and apoptosis of osteosarcoma stem cells by targeting PTEN. Tumour Biol. 2017;39(5):1010428317705341. https://doi.org/10.1177/1010428317705341.

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Sun XH, Xu HY, Pan HS, Liu Y, He L. Circ_ORC2 enhances the regulatory effect of miR-19a on its target gene PTEN to affect osteosarcoma cell growth. Biochem Biophys Res Commun. 2019;514(4):1172–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lu C, Peng K, Guo H, Ren X, Hu S, Cai Y, et al. miR-18a-5p promotes cell invasion and migration of osteosarcoma by directly targeting IRF2. Oncol Lett. 2018;16(3):3150–6.

    PubMed  PubMed Central  Google Scholar 

  37. Ding J, Sha L, Shen P, Huang M, Cai Q, Li J. MicroRNA-18a inhibits cell growth and induces apoptosis in osteosarcoma by targeting MED27. Int J Oncol. 2018;53(1):329–38.

    CAS  PubMed  Google Scholar 

  38. Lu B, Feng Z, Fan B, Shi Y. Blocking miR-27a-3p sensitises Taxol resistant osteosarcoma cells through targeting Fbxw7. Bull Cancer (Paris). 2021;108(6):596–604.

    Article  PubMed  Google Scholar 

  39. Liu J, Li M, Liu X, Liu F, Zhu J. miR-27a-3p promotes the malignant phenotypes of osteosarcoma by targeting ten-eleven translocation 1. Int J Oncol. 2018;52(4):1295–304.

    CAS  PubMed  Google Scholar 

  40. Lin T, Ma Q, Zhang Y, Zhang H, Yan J, Gao C. MicroRNA-27a functions as an oncogene in human osteosarcoma by targeting CCNG1. Oncol Lett. 2018;15(1):1067–71.

    PubMed  Google Scholar 

  41. Liu X, Ma W, Ma J, Xiao L, Hao D. Upregulation of miR-95-3p inhibits growth of osteosarcoma by targeting HDGF. Pathol Res Pract. 2019;215(8):152492.

    Article  CAS  PubMed  Google Scholar 

  42. Ma C, Zhan C, Yuan H, Cui Y, Zhang Z. MicroRNA-603 functions as an oncogene by suppressing BRCC2 protein translation in osteosarcoma. Oncol Rep. 2016;35(6):3257–64.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu J, Liu F, Wu Q, Liu X. MiR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN. Int J Mol Med. 2015;36(5):1377–83.

    Article  CAS  PubMed  Google Scholar 

  44. Yu WC, Chen HH, Qu YY, Xu CW, Yang C, Liu Y. MicroRNA-221 promotes cisplatin resistance in osteosarcoma cells by targeting PPP2R2A. Biosci Rep. 2019;39(7):BSR20190198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W, et al. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One. 2013;8(1):e53906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kong D, Zhang Z. NAIF1 suppresses osteosarcoma progression and is regulated by miR-128. Cell Biochem Funct. 2018;36(8):443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu X, Liang Z, Gao K, Li H, Zhao G, Wang S, et al. MicroRNA-128 inhibits EMT of human osteosarcoma cells by directly targeting integrin α2. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37(6):7951–7.

    Article  CAS  Google Scholar 

  48. Zhang C, Xie L, Liang H, Cui Y. LncRNA MIAT facilitates osteosarcoma progression by regulating mir-128-3p/VEGFC axis. IUBMB Life. 2019;71(7):845–53.

    Article  CAS  PubMed  Google Scholar 

  49. Li Z, Ni J, Song D, Ding M. Regulatory mechanism of microRNA-128 in osteosarcoma tumorigenesis and evolution through targeting SASH1. Oncol Lett. 2018;15(6):8687–94. https://doi.org/10.3892/ol.2018.8397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao ZQ, Shen Z, Huang WY. MicroRNA-802 promotes osteosarcoma cell proliferation by targeting p27. Asian Pac J Cancer Prev APJCP. 2013;14(12):7081–4.

    Article  PubMed  Google Scholar 

  51. Zhou W, Liu Y, Wu X. Down-regulation of circITCH promotes osteosarcoma development and resistance to doxorubicin via the miR-524/RASSF6 axis. J Gene Med. 2021;23(10):e3373.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou JL, Deng S, Fang HS, Yu G, Peng H. let-7g promotes osteosarcoma by reducing HOXB1 to activate NF-kB pathway. Biomed Pharmacother Biomedecine Pharmacother. 2019;109:2335–41.

    Article  CAS  Google Scholar 

  53. He Y, Yu B. MicroRNA-93 promotes cell proliferation by directly targeting P21 in osteosarcoma cells. Exp Ther Med. 2017;13(5):2003–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawano M, Tanaka K, Itonaga I, Ikeda S, Iwasaki T, Tsumura H. microRNA-93 promotes cell proliferation via targeting of PTEN in Osteosarcoma cells. J Exp Clin Cancer Res CR. 2015;5(34):76.

    Article  Google Scholar 

  55. Pu Y, Yi Q, Zhao F, Wang H, Cai W, Cai S. MiR-20a-5p represses multi-drug resistance in osteosarcoma by targeting the KIF26B gene. Cancer Cell Int. 2016;16:64.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wang W, Zhang L, Zheng K, Zhang X. miR-17-5p promotes the growth of osteosarcoma in a BRCC2-dependent mechanism. Oncol Rep. 2016;35(3):1473–82.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao X, Xu Y, Sun X, Ma Y, Zhang Y, Wang Y, et al. miR-17-5p promotes proliferation and epithelial-mesenchymal transition in human osteosarcoma cells by targeting SRC kinase signaling inhibitor 1. J Cell Biochem. 2019;120(4):5495–504.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu M, Wu Y, Wang Z, Lin M, Su B, Li C, et al. miR-128-3p serves as an oncogenic microRNA in osteosarcoma cells by downregulating ZC3H12D. Oncol Lett. 2021;21(2):152.

    Article  CAS  PubMed  Google Scholar 

  59. Ji Q, Xu X, Li L, Goodman SB, Bi W, Xu M, et al. miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14. Cell Death Dis. 2017;8(10):e3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pan Z, Wu C, Li Y, Li H, An Y, Wang G, et al. LncRNA DANCR silence inhibits SOX5-medicated progression and autophagy in osteosarcoma via regulating miR-216a-5p. Biomed Pharmacother Biomedecine Pharmacother. 2020;122:109707.

    Article  CAS  Google Scholar 

  61. Xie L, Huang R, Liu S, Wu W, Su A, Li R, et al. A positive feedback loop of SIRT1 and miR17HG promotes the repair of DNA double-stranded breaks. Cell Cycle. 2019;18(17):2110–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Meng Y, Hao D, Huang Y, Jia S, Zhang J, He X, et al. Positive feedback loop SP1/MIR17HG/miR-130a-3p promotes osteosarcoma proliferation and cisplatin resistance. Biochem Biophys Res Commun. 2020;521(3):739–45.

    Article  CAS  PubMed  Google Scholar 

  63. Li Z, Li Y, Wang N, Yang L, Zhao W, Zeng X. miR-130b targets NKD2 and regulates the Wnt signaling to promote proliferation and inhibit apoptosis in osteosarcoma cells. Biochem Biophys Res Commun. 2016;471(4):479–85.

    Article  CAS  PubMed  Google Scholar 

  64. Sun C, Chen C, Chen Z, Guo J, Yu ZH, Qian W, et al. MicroRNA-181a-5p Promotes Osteosarcoma Progression via PTEN/AKT Pathway. Anal Cell Pathol Amst. 2022;2022:3421600.

    PubMed  PubMed Central  Google Scholar 

  65. Lu G, Du L, Guo Y, Xing B, Lu J, Wei Y. Expression and role of microRNA-1271 in the pathogenesis of osteosarcoma. Exp Ther Med. 2018;15(2):1934–40.

    CAS  PubMed  Google Scholar 

  66. Jiang R, Zhang C, Liu G, Gu R, Wu H. MicroRNA-107 promotes proliferation, migration, and invasion of osteosarcoma cells by targeting tropomyosin 1. Oncol Res. 2017;25(8):1409–19.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Liu N, Li MY, Du MF. Long non-coding RNA ZEB2-AS1 regulates osteosarcoma progression by acting as a molecular sponge of miR-107 to modulate SALL4 expression. Am J Transl Res. 2021;13(3):1140–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu W, Jiang D, Gong F, Huang Y, Luo Y, Rong Y, et al. miR-210-5p promotes epithelial-mesenchymal transition by inhibiting PIK3R5 thereby activating oncogenic autophagy in osteosarcoma cells. Cell Death Dis. 2020;11(2):93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ye F, Tian L, Zhou Q, Feng D. LncRNA FER1L4 induces apoptosis and suppresses EMT and the activation of PI3K/AKT pathway in osteosarcoma cells via inhibiting miR-18a-5p to promote SOCS5. Gene. 2019;30(721):144093.

    Article  Google Scholar 

  70. Mu Y, Zhang L, Chen X, Chen S, Shi Y, Li J. Silencing microRNA-27a inhibits proliferation and invasion of human osteosarcoma cells through the SFRP1-dependent Wnt/β-catenin signaling pathway. Biosci Rep. 2019;39(6):BSR20182366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pan W, Wang H, Jianwei R, Ye Z. MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2K4 in human osteosarcoma cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2014;33(2):402–12.

    Article  CAS  Google Scholar 

  72. Liu Y, Cheng Z, Pan F, Yan W. MicroRNA-373 promotes growth and cellular invasion in osteosarcoma cells by activation of the PI3K/AKT-Rac1-JNK pathway: The potential role in spinal osteosarcoma. Oncol Res. 2017;25(6):989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang H, Cao C, Wang LJ. LncRNA LINC-PINT regulating proliferation and apoptosis of osteosarcoma cells by targeting miR-524-5p. Zhonghua Zhong Liu Za Zhi. 2020;42(4):325–30.

    CAS  PubMed  Google Scholar 

  74. Zhuang M, Qiu X, Cheng D, Zhu C, Chen L. MicroRNA-524 promotes cell proliferation by down-regulating PTEN expression in osteosarcoma. Cancer Cell Int. 2018;18:114.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Waresijiang N, Sun J, Abuduaini R, Jiang T, Zhou W, Yuan H. The downregulation of miR-125a-5p functions as a tumor suppressor by directly targeting MMP-11 in osteosarcoma. Mol Med Rep. 2016;13(6):4859–64.

    Article  CAS  PubMed  Google Scholar 

  76. Luo Z, Yang Y, Li D, Yu L, Liu N, Li L, et al. Circular RNA 0086996 regulates growth and migration of osteosarcoma cells via miR-125b-5p. Pathol Res Pract. 2020;216(11):153230.

    Article  CAS  PubMed  Google Scholar 

  77. Li JF, Song YZ. Circular RNA GLI2 promotes osteosarcoma cell proliferation, migration, and invasion by targeting miR-125b-5p. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2017;39(7):1010428317709991.

    Article  Google Scholar 

  78. Ma C, Han J, Dong D, Wang N. MicroRNA-152 suppresses human osteosarcoma cell proliferation and invasion by targeting E2F transcription factor 3. Oncol Res. 2018;26(5):765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weng Y, Shen Y, He Y, Pan X, Xu J, Jiang Y, et al. The miR-15b-5p/PDK4 axis regulates osteosarcoma proliferation through modulation of the Warburg effect. Biochem Biophys Res Commun. 2018;503(4):2749–57.

    Article  CAS  PubMed  Google Scholar 

  80. Zhu Y, Tang L, Zhao S, Sun B, Cheng L, Tang Y, et al. CXCR4-mediated osteosarcoma growth and pulmonary metastasis is suppressed by MicroRNA-613. Cancer Sci. 2018;109(8):2412–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu SY, Deng SY, He YB, Ni GX. miR-451 inhibits cell growth, migration and angiogenesis in human osteosarcoma via down-regulating IL 6R. Biochem Biophys Res Commun. 2017;482(4):987–93.

    Article  CAS  PubMed  Google Scholar 

  82. Yang L, Li H, Huang A. MiR-429 and MiR-143-3p function as diagnostic and prognostic markers for osteosarcoma. Clin Lab. 2020;66(10) https://doi.org/10.7754/Clin.Lab.2020.191237.

  83. Zhou Y, Yang C, Wang K, Liu X, Liu Q. MicroRNA-33b inhibits the proliferation and migration of osteosarcoma cells via targeting hypoxia-inducible factor-1α. Oncol Res. 2017;25(3):397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lin H, Zhao Z, Hao Y, He J, He J. Long noncoding RNA HIF1A-AS2 facilitates cell survival and migration by sponging miR-33b-5p to modulate SIRT6 expression in osteosarcoma. Biochem Cell Biol Biochim Biol Cell. 2020;98(2):284–92.

    Article  CAS  Google Scholar 

  85. Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, et al. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 2019;18(1):64.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Haque I, Kawsar HI, Motes H, Sharma M, Banerjee S, Banerjee SK, et al. Downregulation of miR-506-3p facilitates EGFR-TKI resistance through induction of sonic hedgehog signaling in non-small-cell lung cancer cell lines. Int J Mol Sci. 2020;21(23):E9307.

    Article  Google Scholar 

  87. Chen L, Wang X, Ji C, Hu J, Fang L. MiR-506-3p suppresses papillary thyroid cancer cells tumorigenesis by targeting YAP1. Pathol Res Pract. 2020;216(12):153231.

    Article  CAS  PubMed  Google Scholar 

  88. Fu X, Deng X, Xiao W, Huang B, Yi X, Zou Y. Downregulation of NEAT1 sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine through modulation of the miR-506-3p/ZEB2/EMT axis. Am J Cancer Res. 2021;11(8):3841–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jiashi W, Chuang Q, Zhenjun Z, Guangbin W, Bin L, Ming H. MicroRNA-506-3p inhibits osteosarcoma cell proliferation and metastasis by suppressing RAB3D expression. Aging. 2018;10(6):1294–305.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fu Y, Tang Y, Wang J, Guo Z. MicroRNA-181c suppresses the biological progression of osteosarcoma via targeting SMAD7 and regulating transforming growth factor-β (TGF-β) signaling pathway. Med Sci Monit Int Med J Exp Clin Res. 2019;28(25):4801–10.

    Google Scholar 

  91. Wang T, Xu Y, Liu X, Zeng Y, Liu L. miR-96-5p is the tumor suppressor in osteosarcoma via targeting SYK. Biochem Biophys Res Commun. 2021;1(572):49–56.

    Google Scholar 

  92. Wang D, Bao F, Teng Y, Li Q, Li J. MicroRNA-506-3p initiates mesenchymal-to-epithelial transition and suppresses autophagy in osteosarcoma cells by directly targeting SPHK1. Biosci Biotechnol Biochem. 2019;83(5):836–44.

    Article  CAS  PubMed  Google Scholar 

  93. Wang G, Li B, Fu Y, He M, Wang J, Shen P, et al. miR-23a suppresses proliferation of osteosarcoma cells by targeting SATB1. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2015;36(6):4715–21.

    Article  CAS  Google Scholar 

  94. Liu J, Chen M, Ma L, Dang X, Du G. LncRNA GAS5 suppresses the proliferation and invasion of osteosarcoma cells via the miR-23a-3p/PTEN/PI3K/AKT pathway. Cell Transplant. 2020;29:963689720953093.

    Article  PubMed  Google Scholar 

  95. Gindin Y, Jiang Y, Francis P, Walker RL, Abaan OD, Zhu YJ, et al. miR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1. Front Genet. 2015;6:233.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gao S, Wang K, Wang X. miR-375 targeting autophagy-related 2B (ATG2B) suppresses autophagy and tumorigenesis in cisplatin-resistant osteosarcoma cells. Neoplasma. 2020;67(4):724–34.

    Article  CAS  PubMed  Google Scholar 

  97. Sun X, Wei B, Peng ZH, Fu QL, Wang CJ, Zheng JC, et al. Knockdown of lncRNA XIST suppresses osteosarcoma progression by inactivating AKT/mTOR signaling pathway by sponging miR-375-3p. Int J Clin Exp Pathol. 2019;12(5):1507–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shi ZC, Chu XR, Wu YG, Wu JH, Lu CW, Lü RX, et al. MicroRNA-375 functions as a tumor suppressor in osteosarcoma by targeting PIK3CA. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2015;36(11):8579–84.

    Article  CAS  Google Scholar 

  99. Gong G, Han Z, Wang W, Xu Q, Zhang J. Silencing hsa_circRNA_0008035 exerted repressive function on osteosarcoma cell growth and migration by upregulating microRNA-375. Cell Cycle Georget Tex. 2020;19(17):2139–47.

    Article  CAS  Google Scholar 

  100. Ji Y, Liu J, Zhu W, Ji J. circ_0002060 enhances doxorubicin resistance in osteosarcoma by regulating the miR-198/ABCB1 axis. Cancer Biother Radiopharm. 2023;38(9):585–95. https://doi.org/10.1089/cbr.2020.4240.

    Article  CAS  PubMed  Google Scholar 

  101. Liu J, Zhao J, Feng G, Li R, Jiao J. Silencing of circ-CDK14 suppresses osteosarcoma progression through the miR-198/E2F2 axis. Exp Cell Res. 2022;414(1):113082.

    Article  CAS  PubMed  Google Scholar 

  102. Tang Q, Yuan Q, Li H, Wang W, Xie G, Zhu K, et al. miR-223/Hsp70/JNK/JUN/miR-223 feedback loop modulates the chemoresistance of osteosarcoma to cisplatin. Biochem Biophys Res Commun. 2018;497(3):827–34.

    Article  CAS  PubMed  Google Scholar 

  103. Xu J, Yao Q, Hou Y, Xu M, Liu S, Yang L, et al. MiR-223/Ect2/p21 signaling regulates osteosarcoma cell cycle progression and proliferation. Biomed Pharmacother Biomedecine Pharmacother. 2013;67(5):381–6.

    Article  CAS  Google Scholar 

  104. Yan H, Zhang B, Fang C, Chen L. miR-340 alleviates chemoresistance of osteosarcoma cells by targeting ZEB1. Anticancer Drugs. 2018;29(5):440–8.

    Article  CAS  PubMed  Google Scholar 

  105. Zhou X, Wei M, Wang W. MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1. Biochem Biophys Res Commun. 2013;437(4):653–8.

    Article  CAS  PubMed  Google Scholar 

  106. Cai H, Lin L, Cai H, Tang M, Wang Z. Combined microRNA-340 and ROCK1 mRNA profiling predicts tumor progression and prognosis in pediatric osteosarcoma. Int J Mol Sci. 2014;15(1):560–73.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lou P, Ding T, Zhan X. Long noncoding RNA HNF1A-AS1 regulates osteosarcoma advancement through modulating the miR-32-5p/HMGB1 axis. Cancer Biother Radiopharm. 2021;36(4):371–81.

    CAS  PubMed  Google Scholar 

  108. Armakolas N, Armakolas A, Antonopoulos A, Dimakakos A, Stathaki M, Koutsilieris M. The role of the IGF-1 Ec in myoskeletal system and osteosarcoma pathophysiology. Crit Rev Oncol Hematol. 2016;108:137–45.

    Article  PubMed  Google Scholar 

  109. Broadhead ML, Clark JCM, Myers DE, Dass CR, Choong PFM. The molecular pathogenesis of osteosarcoma: a review. Sarcoma. 2011;2011:959248.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Li YS, Liu Q, Tian J, He HB, Luo W. Angiogenesis process in osteosarcoma: An updated perspective of pathophysiology and therapeutics. Am J Med Sci. 2019;357(4):280–8.

    Article  PubMed  Google Scholar 

  111. Ottaviani G, Jaffe N. The etiology of osteosarcoma. Cancer Treat Res. 2009;152:15–32.

    Article  PubMed  Google Scholar 

  112. Group CO. Therapeutically applicable research to generate effective treatments (TARGET) for osteosarcoma [Internet]. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT01190943.

  113. Shen Y. A pilot study of circulating exosome RNA as diagnostic and prognostic markers in lung metastases of primary high-grade osteosarcoma [Internet]. clinicaltrials.gov; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03108677.

  114. Oncternal Therapeutics I. A phase 1 / 2, dose escalation study of intravenous TK216 in patients with relapsed or refractory Ewing sarcoma [Internet]. clinicaltrials.gov; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT02657005.

  115. Evaluation of circulating miRNA profiles from patients with Ewing’s sarcoma. DRKS - Deutsches Register Klinischer Studien (German Clinical Trials Register). Available from:https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00011791. Accessed 5 Aug 2022.

  116. Detection of circulating tumor-DNA as a “liquid biopsy” in patients with Ewing Sarcoma and PNET: a pilot study, DRKS - Deutsches Register Klinischer Studien (German Clinical Trials Register). Available from: https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00009029. Accessed 5 Aug 2022.

  117. Analysis of biomarkers in the peripheral blood of patients with soft tissue sarcoma, DRKS - Deutsches Register Klinischer Studien (German Clinical Trials Register). Available from: https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00009587. Accessed 5 Aug 2022.

  118. Hospital SJCR. Molecular analysis of solid tumors [Internet]. clinicaltrials.gov; 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT01050296. Accessed 5 Aug 2022.

  119. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shen Q, Jiang S, Wu M, Zhang L, Su X, Zhao D. LncRNA HEIH confers cell sorafenib resistance in hepatocellular carcinoma by regulating miR-98-5p/PI3K/AKT pathway. Cancer Manag Res. 2020;12:6585–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ergin K, Aktaş S, Altun Z, Dınız G, Olgun N. MicroRNA profiles in neuroblastoma: Differences in risk and histology groups. Asia Pac J Clin Oncol. 2018;14(5):e374–9.

    Article  PubMed  Google Scholar 

  122. Yu Y, Zhang J, Jin Y, Yang Y, Shi J, Chen F, et al. MiR-20a-5p suppresses tumor proliferation by targeting autophagy-related gene 7 in neuroblastoma. Cancer Cell Int. 2018;18:5.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang H, Liu L, Chen L, Liu H, Ren S, Tao Y. Long noncoding RNA DANCR confers cytarabine resistance in acute myeloid leukemia by activating autophagy via the miR-874-3P/ATG16L1 axis. Mol Oncol. 2021;15(4):1203–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen W, Hao X, Yang B, Zhang Y, Sun L, Hua Y, et al. MYCN-amplified neuroblastoma cell-derived exosomal miR-17-5p promotes proliferation and migration of non-MYCN amplified cells. Mol Med Rep. 2021;23(4):245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu X, Yuan H, Pan J, Chen W, Chen C, Li Y, et al. The identification of miRNA and mRNA expression profiles associated with pediatric atypical teratoid/rhabdoid tumor. BMC Cancer. 2022;6(22):499.

    Article  Google Scholar 

  126. Cipro Š, Belhajová M, Eckschlager T, Zámečník J. MicroRNA expression in pediatric intracranial ependymomas and their potential value for tumor grading. Oncol Lett. 2019;17(1):1379–83.

    CAS  PubMed  Google Scholar 

  127. Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, Sredni ST, et al. Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One. 2011;6(10):e25114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zakrzewska M, Fendler W, Zakrzewski K, Sikorska B, Grajkowska W, Dembowska-Bagińska B, et al. Altered microRNA expression is associated with tumor grade, molecular background and outcome in childhood infratentorial ependymoma. PLoS One. 2016;11(7):e0158464.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gruszka R, Zakrzewski K, Liberski PP, Zakrzewska M. microRNA interaction with MAPK and AKT pathways in paediatric brain tumours - preliminary results and review of the literature. Folia Neuropathol. 2020;58(2):123–32.

    Article  PubMed  Google Scholar 

  130. Csók Á, Micsik T, Magyar Z, Tornóczky T, Kuthi L, Nishi Y, et al. Alterations of miRNA expression in diffuse hyperplastic perilobar nephroblastomatosis: Mapping the way to understanding wilms’ tumor development and differential diagnosis. Int J Mol Sci. 2023;24(10):8793.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Almeida RS, Costa E Silva M, Coutinho LL, Garcia Gomes R, Pedrosa F, Massaro JD, et al. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia. Hematol Oncol. 2019;37(1):103–12.

    Article  CAS  PubMed  Google Scholar 

  132. Chen Y, Chen S, Lu J, Yuan D, He L, Qin P, et al. MicroRNA-363-3p promote the development of acute myeloid leukemia with RUNX1 mutation by targeting SPRYD4 and FNDC3B. Medicine (Baltimore). 2021;100(18):e25807.

    Article  CAS  PubMed  Google Scholar 

  133. Althoff K, Lindner S, Odersky A, Mestdagh P, Beckers A, Karczewski S, et al. miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin. Int J Cancer. 2015;136(6):1308–20.

    Article  CAS  PubMed  Google Scholar 

  134. Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L, et al. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett. 2011;303(1):56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang X, Zhang H, Zhang A, Han L, Wang K, Liu R, et al. Upregulation of miR-20a and miR-106b is involved in the acquisition of malignancy of pediatric brainstem gliomas. Oncol Rep. 2012;28(4):1293–300.

    Article  CAS  PubMed  Google Scholar 

  136. Gruszka R, Zakrzewski K, Liberski PP, Zakrzewska M. mRNA and miRNA expression analyses of the MYC/E2F/miR-17-92 network in the most common pediatric brain tumors. Int J Mol Sci. 2021;22(2):543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Verboon LJ, Obulkasim A, de Rooij JDE, Katsman-Kuipers JE, Sonneveld E, Baruchel A, et al. MicroRNA-106b~25 cluster is upregulated in relapsed MLL-rearranged pediatric acute myeloid leukemia. Oncotarget. 2016;7(30):48412–22.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Buechner J, Tømte E, Haug BH, Henriksen JR, Løkke C, Flægstad T, et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer. 2011;105(2):296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mosakhani N, Missiry ME, Vakkila E, Knuutila S, Vakkila J. low expression of miR-18a as a characteristic of pediatric acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2017;39(8):585–8.

    Article  CAS  PubMed  Google Scholar 

  140. Leoncini PP, Vitullo P, Reddel S, Tocco V, Paganelli V, Stocchi F, et al. MicroRNA profiling of paediatric AML with FLT-ITD or MLL-rearrangements: Expression signatures and in vitro modulation of miR-221-3p and miR-222-3p with BRD4/HATs inhibitors. Oncol Rep. 2022;48(6):221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sredni ST, Bonaldo MdeF, Costa FF, Huang CC, Hamm CA, Rajaram V, et al. Upregulation of mir-221 and mir-222 in atypical teratoid/rhabdoid tumors: potential therapeutic targets. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg. 2010;26(3):279–83.

    Article  Google Scholar 

  142. Eguía-Aguilar P, Pérezpeña-Díazconti M, Benadón-Darszon E, Chico-Ponce de León F, Gordillo-Domínguez L, Torres-García S, et al. Reductions in the expression of miR-124–3p, miR-128–1, and miR-221–3p in pediatric astrocytomas are related to high-grade supratentorial, and recurrent tumors in Mexican children. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg. 2014;30(7):1173–81.

    Article  Google Scholar 

  143. Tantawy M, Elzayat MG, Yehia D, Taha H. Identification of microRNA signature in different pediatric brain tumors. Genet Mol Biol. 2018;41(1):27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. He XY, Tan ZL, Mou Q, Liu FJ, Liu S, Yu CW, et al. microRNA-221 enhances MYCN via targeting nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(11):2905–18.

    Article  CAS  Google Scholar 

  145. Shi LH, Tian L, Wang YF, Liu JS, Guo MF, Liu W. Effects of MiR-221-mediated Wnt/β- catenin signaling pathway on biological activity of childhood acute lymphoblastic leukemia cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2019;27(5):1367–73.

    PubMed  Google Scholar 

  146. Bhatia P, Singh M, Singh A, Sharma P, Trehan A, Varma N. Epigenetic analysis reveals significant differential expression of miR-378C and miR-128-2-5p in a cohort of relapsed pediatric B-acute lymphoblastic leukemia cases. Int J Lab Hematol. 2021;43(5):1016–23.

    Article  PubMed  Google Scholar 

  147. Longjohn MN, Squires WRB, Christian SL. Meta-analysis of microRNA profiling data does not reveal a consensus signature for B cell acute lymphoblastic leukemia. Gene. 2022;5(821):146211.

    Article  Google Scholar 

  148. Druy AE, Tsaur GA, Shorikov EV, Tytgat GAM, Fechina LG. Suppressed miR-128–3p combined with TERT overexpression predicts dismal outcomes for neuroblastoma. Cancer Biomark Sect Dis Markers. 2022;34(4):661–71.

    Article  CAS  Google Scholar 

  149. Du X, Tu Y, Liu S, Zhao P, Bao Z, Li C, et al. LINC00511 contributes to glioblastoma tumorigenesis and epithelial-mesenchymal transition via LINC00511/miR-524-5p/YB1/ZEB1 positive feedback loop. J Cell Mol Med. 2020;24(2):1474–87.

    Article  CAS  PubMed  Google Scholar 

  150. López-Aguilar JE, Velázquez-Flores MA, Simón-Martínez LA, Ávila-Miranda R, Rodríguez-Florido MA, Ruiz-Esparza GR. Circulating microRNAs as biomarkers for pediatric astrocytomas. Arch Med Res. 2017;48(4):323–32.

    Article  PubMed  Google Scholar 

  151. Choi SA, Choi JW, Wang KC, Phi JH, Lee JY, Park KD, et al. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors. Neuro-Oncol. 2015;17(6):810–21.

    Article  CAS  PubMed  Google Scholar 

  152. Wu X, Feng X, Zhao X, Ma F, Liu N, Guo H, et al. Role of Beclin-1-mediated autophagy in the survival of pediatric leukemia cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2016;39(5):1827–36.

    Article  CAS  Google Scholar 

  153. Malouf C, Antunes ETB, O’Dwyer M, Jakobczyk H, Sahm F, Landua SL, et al. miR-130b and miR-128a are essential lineage-specific codrivers of t(4;11) MLL-AF4 acute leukemia. Blood. 2021;138(21):2066–92.

    Article  CAS  PubMed  Google Scholar 

  154. Hu Y, Yan J. Aberrant expression and mechanism of miR-130b-3p/phosphatase and tensin homolog in nephroblastoma in children. Exp Ther Med. 2019;18(2):1021–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Ludwig N, Nourkami-Tutdibi N, Backes C, Lenhof HP, Graf N, Keller A, et al. Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatr Blood Cancer. 2015;62(8):1360–7.

    Article  CAS  PubMed  Google Scholar 

  156. Huang S, Xue P, Han X, Zhang C, Yang L, Liu L, et al. Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis. Cell Death Dis. 2020;11(6):408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhao MW, Yang P, Zhao LL. Chlorpyrifos activates cell pyroptosis and increases susceptibility on oxidative stress-induced toxicity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway in human neuroblastoma SH-SY5Y cells: Implication for association between chlorpyrifos and Parkinson’s disease. Environ Toxicol. 2019;34(6):699–707.

    Article  CAS  PubMed  Google Scholar 

  158. Catanzaro G, Sabato C, Russo M, Rosa A, Abballe L, Besharat ZM, et al. Loss of miR-107, miR-181c and miR-29a-3p promote activation of Notch2 signaling in pediatric high-grade gliomas (pHGGs). Int J Mol Sci. 2017;18(12):2742.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Xu J, Hao Y, Gao X, Wu Y, Ding Y, Wang B. CircSLC7A6 promotes the progression of Wilms’ tumor via microRNA-107/ ABL proto-oncogene 2 axis. Bioengineered. 2022;13(1):308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang X, Li X, Tan L, Zhang F, Zhang J, Zhao X, Zhang Y, Du G, Liu W. Identification and validation of lipid metabolism gene FASN-associated miRNA in Wilms tumor. Biochem Genet. 2024. https://doi.org/10.1007/s10528-024-10703-x.

  161. Zhou Y, Zhu H, Han J, Xu Y, Wang D, Jin W, et al. miR-125b-5p suppresses leukemia cell proliferation by regulating MCL1. J Environ Pathol Toxicol Oncol Off Organ Int Soc Environ Toxicol Cancer. 2023;42(1):17–26.

    Article  Google Scholar 

  162. Feng Y, Zhong M, Zeng S, Wang L, Liu P, Xiao X, et al. Exosome-derived miRNAs as predictive biomarkers for diffuse large B-cell lymphoma chemotherapy resistance. Epigenomics. 2019;11(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  163. Yuan DM, Ma J, Fang WB. Identification of non-coding RNA regulatory networks in pediatric acute myeloid leukemia reveals circ-0004136 could promote cell proliferation by sponging miR-142. Eur Rev Med Pharmacol Sci. 2019;23(21):9251–8.

    PubMed  Google Scholar 

  164. Gheidari F, Arefian E, Jamshidi Adegani F, Fallah Atanaki F, Soleimani M. The miR-142 suppresses U-87 glioblastoma cell growth by targeting EGFR oncogenic signaling pathway. Iran J Pharm Res IJPR. 2021;20(4):202–12.

    CAS  PubMed  Google Scholar 

  165. Plousiou M, De Vita A, Miserocchi G, Bandini E, Vannini I, Melloni M, et al. Growth inhibition of retinoblastoma cell line by exosome-mediated transfer of miR-142-3p. Cancer Manag Res. 2022;14:2119–31.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Soltani S, Zakeri A, Tabibzadeh A, Zakeri AM, Zandi M, Siavoshi S, et al. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Mol Biol Rep. 2021;48(2):1801–17.

    Article  CAS  PubMed  Google Scholar 

  167. Barrios-Palacios D, Organista-Nava J, Balandrán JC, Alarcón-Romero LDC, Zubillaga-Guerrero MI, Illades-Aguiar B, et al. The role of miRNAs in childhood acute lymphoblastic leukemia relapse and the associated molecular mechanisms. Int J Mol Sci. 2023;25(1):119.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Birks DK, Barton VN, Donson AM, Handler MH, Vibhakar R, Foreman NK. Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer. 2011;56(2):211–6.

    Article  PubMed  Google Scholar 

  169. Wang HF, Zhang YY, Zhuang HW, Xu M. MicroRNA-613 attenuates the proliferation, migration and invasion of Wilms’ tumor via targeting FRS2. Eur Rev Med Pharmacol Sci. 2017;21(15):3360–9.

    PubMed  Google Scholar 

  170. Taheri M, Hussen BM, Abdullah SR, Ghafouri-Fard S, Jamali E, Shojaei S. Dysregulation of non-coding RNAs in Wilms tumor. Pathol Res Pract. 2023;246:154523.

    Article  CAS  PubMed  Google Scholar 

  171. Wang JX, Yang Y, Li K. Long noncoding RNA DANCR aggravates retinoblastoma through miR-34c and miR-613 by targeting MMP-9. J Cell Physiol. 2018;233(10):6986–95.

    Article  CAS  PubMed  Google Scholar 

  172. Yu X, Wang W. Tumor suppressor microRNA-613 inhibits glioma cell proliferation, invasion and angiogenesis by targeting vascular endothelial growth factor A. Mol Med Rep. 2017;16(5):6729–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang Y, Chu X, Wei Q. MiR-451 promotes cell apoptosis and inhibits autophagy in pediatric acute myeloid leukemia by targeting HMGB1. J Environ Pathol Toxicol Oncol Off Organ Int Soc Environ Toxicol Cancer. 2021;40(2):45–53.

    Article  Google Scholar 

  174. Avigad S, Verly IRN, Lebel A, Kordi O, Shichrur K, Ohali A, et al. miR expression profiling at diagnosis predicts relapse in pediatric precursor B-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2016;55(4):328–39.

    Article  CAS  PubMed  Google Scholar 

  175. Wang Y, Liu J, Yao Q, Wang Y, Liu Z, Zhang L. LncRNA SNHG6 promotes Wilms' tumor progression through regulating miR-429/FRS2 axis. Cancer Biother Radiopharm. 2021. https://doi.org/10.1089/cbr.2020.3705.

  176. Shao Q, Wang Q, Wang J. LncRNA SCAMP1 regulates ZEB1/JUN and autophagy to promote pediatric renal cell carcinoma under oxidative stress via miR-429. Biomed Pharmacother Biomedecine Pharmacother. 2019;120:109460.

    Article  CAS  Google Scholar 

  177. Wang HF, Wang WH, Zhuang HW, Xu M. MiR-429 regulates the proliferation and apoptosis of nephroblastoma cells through targeting c-myc. Eur Rev Med Pharmacol Sci. 2018;22(16):5172–9.

    PubMed  Google Scholar 

  178. Gheidari F, Arefian E, Saadatpour F, Kabiri M, Seyedjafari E, Teimoori-Toolabi L, et al. The miR-429 suppresses proliferation and migration in glioblastoma cells and induces cell-cycle arrest and apoptosis via modulating several target genes of ERBB signaling pathway. Mol Biol Rep. 2022;49(12):11855–66.

    Article  CAS  PubMed  Google Scholar 

  179. Zhou X, Lu H, Li F, Hao X, Han L, Dong Q, et al. MicroRNA-429 inhibits neuroblastoma cell proliferation, migration and invasion via the NF-κB pathway. Cell Mol Biol Lett. 2020;25:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dawidowska M, Maćkowska-Maślak N, Drobna-Śledzińska M, Kosmalska M, Jaksik R, Szymczak D, et al. Small RNA-seq reveals similar miRNA transcriptome in children and young adults with T-ALL and indicates miR-143-3p as novel candidate tumor suppressor in this leukemia. Int J Mol Sci. 2022;23(17):10117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang C, Zhang M, Wu J, Zhang Y, Sun Y. MiR-143-3p inhibits cell proliferation in pedatric acute myeloid leukemia via inhibition of KAT6A. Pediatr Hematol Oncol. 2022;39(4):379–89.

    Article  CAS  PubMed  Google Scholar 

  182. Hu Y, Sun H, Hu J, Zhang X. LncRNA DLX6-AS1 promotes the progression of neuroblastoma by activating STAT2 via targeting miR-506-3p. Cancer Manag Res. 2020;12:7451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Mi J, Han Y, Zhang J, Hao X, Xing M, Shang C. Long noncoding RNA LINC01410 promotes the tumorigenesis of neuroblastoma cells by sponging microRNA-506-3p and modulating WEE1. Cancer Med. 2020;9(21):8133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Gershanov S, Toledano H, Pernicone N, Fichman S, Michowiz S, Pinhasov A, et al. Differences in RNA and microRNA expression between PTCH1- and SUFU-mutated Medulloblastoma. Cancer Genomics Proteomics. 2021;18(3):335–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tombolan L, Millino C, Pacchioni B, Cattelan M, Zin A, Bonvini P, et al. Circulating miR-26a as potential prognostic biomarkers in pediatric rhabdomyosarcoma. Front Genet. 2020;11:606274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang YS, Wang MY, Zhang WL, Tang CH. Proliferation, migration and apoptosis of acute myeloid leukemia cells regulated by mir-23a-3p targeting SMC1A and the mechanism. Zhonghua Zhong Liu Za Zhi. 2019;41(10):753–9.

    CAS  PubMed  Google Scholar 

  187. Ge J, Wang B, Zhao S, Xu J. Inhibition of lncRNA NEAT1 sensitizes medulloblastoma cells to cisplatin through modulating the miR-23a-3p-glutaminase (GLS) axis. Bioengineered. 2022;13(3):7670–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bookland M, Tang-Schomer M, Gillan E, Kolmakova A. Circulating serum oncologic miRNA in pediatric juvenile pilocytic astrocytoma patients predicts mural nodule volume. Acta Neurochir (Wien). 2018;160(8):1571–81.

    Article  PubMed  Google Scholar 

  189. Yang H, Zhang X, Zhao Y, Sun G, Zhang J, Gao Y, et al. Downregulation of lncRNA XIST represses tumor growth and boosts radiosensitivity of neuroblastoma via modulation of the miR-375/L1CAM Axis. Neurochem Res. 2020;45(11):2679–90.

    Article  CAS  PubMed  Google Scholar 

  190. Zhang H, Liu T, Yi S, Gu L, Zhou M. Targeting MYCN IRES in MYCN-amplified neuroblastoma with miR-375 inhibits tumor growth and sensitizes tumor cells to radiation. Mol Oncol. 2015;9(7):1301–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wang Z, Hong Z, Gao F, Feng W. Upregulation of microRNA-375 is associated with poor prognosis in pediatric acute myeloid leukemia. Mol Cell Biochem. 2013;383(1–2):59–65.

    Article  CAS  PubMed  Google Scholar 

  192. Casanova M, Pontis F, Ghidotti P, Petraroia I, Venturini LV, Bergamaschi L, et al. MiR-223 exclusively impairs in vitro tumor growth through IGF1R modulation in rhabdomyosarcoma of adolescents and young adults. Int J Mol Sci. 2022;23(22):13989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Pomari E, Lovisa F, Carraro E, Primerano S, D’Amore ESG, Bonvini P, et al. Clinical impact of miR-223 expression in pediatric T-Cell lymphoblastic lymphoma. Oncotarget. 2017;8(64):107886–98.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 2013;210(8):1545–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Han L, Li Z, Jiang Y, Jiang Z, Tang L. SNHG29 regulates miR-223-3p/CTNND1 axis to promote glioblastoma progression via Wnt/β-catenin signaling pathway. Cancer Cell Int. 2019;19:345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Hu XY, Yin JJ, Chao R, Zhu SD, Deng W, Pan M. Correlation of plasma MiR-146a, MiR-223 levels with the prognosis of childhood with acute lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2021;29(6):1727–32.

    PubMed  Google Scholar 

  197. Li K, Han F, Wu Y, Wang X. miR-340 promotes retinoblastoma cell proliferation, migration and invasion through targeting WIF1. OncoTargets Ther. 2021;14:3635–48.

    Article  Google Scholar 

  198. Das S, Bryan K, Buckley PG, Piskareva O, Bray IM, Foley N, et al. Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene. 2013;32(24):2927–36.

    Article  CAS  PubMed  Google Scholar 

  199. Li Y, Kan X. Cuproptosis-related genes MTF1 and LIPT1 as novel prognostic biomarker in acute myeloid leukemia. Biochem Genet. 2024;62(2):1136–59. https://doi.org/10.1007/s10528-023-10473-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.T., A.D., P.S., S.A., Sh.N., M.M., and I.M. performed literature search, bioinformatic analyses, constructed networks, drew figures and wrote the manuscript under the supervision of Su.N. Further, Su.N. conceived, wrote and edited the manuscript.

Corresponding author

Correspondence to Sujit Nair.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trivedi, J., Desai, A., Saha, P. et al. Current Insights into Signature MicroRNA Networks and Signal Transduction in Osteosarcoma. Curr. Pharmacol. Rep. 10, 159–206 (2024). https://doi.org/10.1007/s40495-024-00355-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-024-00355-1

Keywords

Navigation