Skip to main content

Introduction to MicroRNAs in Biological Systems

  • Protocol
  • First Online:
miRNomics: MicroRNA Biology and Computational Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1107))

Abstract

MicroRNAs are 20–24-nucleotide-long noncoding RNAs that bind to the 3′ UTR (untranslated region) of target mRNAs. Since their discovery, microRNAs have been gaining attention for their ability to contribute to gene expression regulation under various physiological conditions. Consequently, deregulated expression of microRNAs has been linked to different disease states. Here, a brief overview of the canonical and alternative microRNA biogenesis pathways and microRNA functions in biological systems is given based on recent developments. In addition, newly emerging regulatory mechanisms, such as alternative polyadenylation, in connection with microRNA-dependent gene expression regulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erson A, Petty E (2008) MicroRNAs in development and disease. Clin Genet 74:296–306

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  4. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862

    Article  PubMed  CAS  Google Scholar 

  5. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    Article  PubMed  Google Scholar 

  6. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956

    Article  PubMed  CAS  Google Scholar 

  7. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  PubMed  CAS  Google Scholar 

  8. Xu N, Li Y, Zhao YT, Guo L, Fang YY, Zhao JH, Wang XJ, Huang L, Guo HS (2012) Identification and characterization of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus. PLoS One 7:e35306

    Article  PubMed  CAS  Google Scholar 

  9. Naqvi AR, Sarwat M, Hasan S, Roychodhury N (2012) Biogenesis, functions and fate of plant microRNAs. J Cell Physiol 227: 3163–3168

    Article  PubMed  CAS  Google Scholar 

  10. Axtell MJ, Westholm JO, Lai EC (2011) Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221

    Article  PubMed  CAS  Google Scholar 

  11. Piriyapongsa J, Mariño-Ramírez L, Jordan I (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  PubMed  CAS  Google Scholar 

  12. Piriyapongsa J, Jordan IK (2008) Dual coding of siRNAs and microRNAs by plant transposable elements. RNA 14:814–821

    Article  PubMed  CAS  Google Scholar 

  13. Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    Article  PubMed  CAS  Google Scholar 

  14. Rodriguez A, Griffiths-Jones S, Ashurst J, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  PubMed  CAS  Google Scholar 

  15. Berezikov E, Chung W, Willis J, Cuppen E, Lai E (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    Article  PubMed  CAS  Google Scholar 

  16. Isik M, Korswagen HC, Berezikov E (2010) Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence 1:5

    Article  PubMed  Google Scholar 

  17. Tam W (2001) Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene 274: 157–167

    Article  PubMed  CAS  Google Scholar 

  18. Eis P, Tam W, Sun L, Chadburn A, Li Z, Gomez M, Lund E, Dahlberg J (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci U S A 102:3627–3632

    Article  PubMed  CAS  Google Scholar 

  19. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  20. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MICRORNA genes. Plant Physiol 138:2145–2154

    Article  PubMed  CAS  Google Scholar 

  21. Wang J, Lu M, Qiu C, Cui Q (2010) TransmiR: a transcription factor-microRNA regulation database. Nucleic Acids Res 38:D119–D122

    Article  PubMed  CAS  Google Scholar 

  22. Barroso-del Jesus A, Lucena-Aguilar G, Menendez P (2009) The miR-302-367 cluster as a potential stemness regulator in ESCs. Cell Cycle 8:394–398

    Article  PubMed  CAS  Google Scholar 

  23. Klinge CM (2012) microRNAs and estrogen action. Trends Endocrinol Metab 23:223–233

    Article  PubMed  CAS  Google Scholar 

  24. Yamakuchi M, Lowenstein CJ (2009) MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle 8:712–715

    Article  PubMed  CAS  Google Scholar 

  25. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 106:3207–3212

    Article  PubMed  CAS  Google Scholar 

  26. Wu JH, Sun YJ, Hsieh PH, Shieh GS (2012) Inferring coregulation of transcription factors and microRNAs in breast cancer. Gene 518(1):139–144. doi:10.1016/j.gene.2012.11.056

    Article  PubMed  Google Scholar 

  27. Chien CH, Sun YM, Chang WC, Chiang-Hsieh PY, Lee TY, Tsai WC, Horng JT, Tsou AP, Huang HD (2011) Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 39:9345–9356

    Article  PubMed  CAS  Google Scholar 

  28. Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, Weichenhan D, Fischer M, Pallasch CP, Herpel E, Rehli M, Byrd JC, Wendtner CM, Plass C (2012) Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant MicroRNA expression in chronic lymphocytic leukemia. Cancer Res 72:3775–3785

    Article  PubMed  CAS  Google Scholar 

  29. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  30. Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326:1275–1279

    Article  PubMed  CAS  Google Scholar 

  31. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  PubMed  CAS  Google Scholar 

  32. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  33. Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  PubMed  CAS  Google Scholar 

  34. Juvvuna PK, Khandelia P, Lee LM, Makeyev EV (2012) Argonaute identity defines the length of mature mammalian microRNAs. Nucleic Acids Res 40:6808–6820

    Article  PubMed  CAS  Google Scholar 

  35. Dueck A, Ziegler C, Eichner A, Berezikov E, Meister G (2012) microRNAs associated with the different human Argonaute proteins. Nucleic Acids Res 40:9850–9862

    Article  PubMed  CAS  Google Scholar 

  36. Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, Krzyzosiak WJ (2011) Structural basis of microRNA length variety. Nucleic Acids Res 39:257–268

    Article  PubMed  CAS  Google Scholar 

  37. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460: 529–533

    Article  PubMed  CAS  Google Scholar 

  39. Choudhury NR, Michlewski G (2012) Terminal loop-mediated control of microRNA biogenesis. Biochem Soc Trans 40:789–793

    Article  PubMed  CAS  Google Scholar 

  40. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101:12753–12758

    Article  PubMed  CAS  Google Scholar 

  41. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MICRORNA genes. PLoS One 2:e219

    Article  PubMed  Google Scholar 

  42. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102:3691–3696

    Article  PubMed  CAS  Google Scholar 

  43. Fang W, Fang W, Lin C, Lin C, Zhang H, Zhang H, Qian J, Zhong L, Xu N (2007) Detection of let-7a microRNA by real-time PCR in colorectal cancer: a single-centre experience from China. J Int Med Res 35:716–723

    Article  PubMed  CAS  Google Scholar 

  44. Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci U S A 104:5437–5442

    Article  PubMed  CAS  Google Scholar 

  45. Miyoshi K, Miyoshi T, Hartig JV, Siomi H, Siomi MC (2010) Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA 16: 506–515

    Article  PubMed  Google Scholar 

  46. Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH, Yang WY, Haussler D, Blelloch R, Kim VN (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136:75–84

    Article  PubMed  CAS  Google Scholar 

  47. Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Caceres JF (2012) DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol 19:760–766

    Article  PubMed  CAS  Google Scholar 

  48. Yang JS, Phillips MD, Betel D, Mu P, Ventura A, Siepel AC, Chen KC, Lai EC (2011) Widespread regulatory activity of vertebrate microRNA* species. RNA 17:312–326

    Article  PubMed  CAS  Google Scholar 

  49. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86

    Article  PubMed  CAS  Google Scholar 

  50. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  PubMed  CAS  Google Scholar 

  51. Curtis HJ, Sibley CR, Wood MJ (2012) Mirtrons, an emerging class of atypical microRNA. Wiley Interdiscip Rev RNA 3:617–632

    Article  PubMed  CAS  Google Scholar 

  52. Diederichs S, Haber DA (2007) Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–1108

    Article  PubMed  CAS  Google Scholar 

  53. Yang JS, Lai EC (2010) Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 9:4455–4460

    Article  PubMed  CAS  Google Scholar 

  54. Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with microRNA-like functions. Mol Cell 32:519–528

    Article  PubMed  CAS  Google Scholar 

  55. Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15:2147–2160

    Article  PubMed  CAS  Google Scholar 

  56. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  57. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    Article  PubMed  CAS  Google Scholar 

  58. Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336:1037–1040

    Article  PubMed  CAS  Google Scholar 

  59. Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150:100–110

    Article  PubMed  CAS  Google Scholar 

  60. Neilsen CT, Goodall GJ, Bracken CP (2012) IsomiRs—the overlooked repertoire in the dynamic microRNAome. Trends Genet 28: 544–549

    Article  PubMed  CAS  Google Scholar 

  61. Martin EC, Elliott S, Rhodes LV, Antoon JW, Fewell C, Zhu Y, Driver JL, Jodari-Karimi M, Taylor CW, Flemington EK, Beckman BS, Collins-Burow BM, Burow ME (2012) Preferential star strand biogenesis of pre-miR-24-2 targets PKC-alpha and suppresses cell survival in MCF-7 breast cancer cells. Mol Carcinog. doi:10.1002/mc.21946 [Epub ahead of print]

    PubMed  Google Scholar 

  62. Qu B, Han X, Tang Y, Shen N (2012) A novel vector-based method for exclusive overexpression of star-form microRNAs. PLoS One 7:e41504

    Article  PubMed  CAS  Google Scholar 

  63. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613

    Article  PubMed  CAS  Google Scholar 

  64. Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J, Li LC (2012) Upregulation of Cyclin B1 by microRNA and its implications in cancer. Nucleic Acids Res 40:1695–1707

    Article  PubMed  CAS  Google Scholar 

  65. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    Article  PubMed  Google Scholar 

  66. Benhamed M, Herbig U, Ye T, Dejean A, Bischof O (2012) Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 14:266–275

    Article  PubMed  CAS  Google Scholar 

  67. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  PubMed  CAS  Google Scholar 

  68. Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    Article  PubMed  CAS  Google Scholar 

  69. Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A (2011) Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 21:741–747

    Article  PubMed  CAS  Google Scholar 

  70. Erson AE, Petty EM (2009) microRNAs and cancer: new research developments and potential clinical applications. Cancer Biol Ther 8:2317–2322

    PubMed  CAS  Google Scholar 

  71. Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY, Mills KD, Graber JH (2009) Global changes in processing of mRNA 3′ untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 69: 9422–9430

    Article  PubMed  CAS  Google Scholar 

  72. Akman BH, Can T, Erson-Bensan AE (2012) Estrogen-induced upregulation and 3′-UTR shortening of CDC6. Nucleic Acids Res 40: 10679–10688

    Article  PubMed  CAS  Google Scholar 

  73. Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B (2008) MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic {beta}-actin gene. Nucleic Acids Res 36:6318–6332

    Article  PubMed  CAS  Google Scholar 

  74. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Carter DR (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 17:792–798

    Article  PubMed  CAS  Google Scholar 

  75. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465:1033–1038

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Erson-Bensan, A.E. (2014). Introduction to MicroRNAs in Biological Systems. In: Yousef, M., Allmer, J. (eds) miRNomics: MicroRNA Biology and Computational Analysis. Methods in Molecular Biology, vol 1107. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-748-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-748-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-747-1

  • Online ISBN: 978-1-62703-748-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics