Skip to main content
Log in

Physiological and biochemical alterations driven by light quality during germination and initial growth of the mandacaru cactus (Cereus jamacaru DC.)

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Germination of many cacti across the Americas is light-dependent, but less has been explored regarding biochemical and morphophysiological alterations during germination and initial growth under different light spectra. Red and blue wavelengths, for instance, are predominantly absorbed by photosynthetic pigments, regulating plant growth. This study aimed to characterize physiological, anatomical and biochemical features of the mandacaru cactus (Cereus jamacaru DC.), an overexploited cactus crop from the Brazilian Caatinga, during germination and initial growth under white, red, and blue lights. Germination was tested under the three light treatments; the emerged seedlings were then cultivated under the same conditions. Seedling height and diameter were registered at 45, 60, 75, and 90 days after sowing. Photosynthetic pigments and total soluble sugars were quantified over time; anatomical analyses of the cladodes were also performed. White and red lights promoted the highest germination percentages (98–97%), with a decrease in the blue light (56%). Seedling height increased under the red light (35–36 mm) compared to the other treatments. Blue light tended to promote greater contents of chlorophylls and carotenoids. Total soluble sugars were greater in the blue light until 60 days, but equal among treatments at 75 and 90 days. Calcium oxalate crystals and amyloplasts were observed at 45 days in all treatments. This study shows contrasting physiological responses between light quality treatments, mostly related to the higher energy dissipation required under the blue wavelength. Future research should investigate seedling biomass production and relative growth rates, including comparisons with other populations of the mandacaru cactus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information. Raw data can be obtained from the authors upon reasonable request.

References

  • Abidi F, Girault T, Douillet O, Guillemain G, Sintes G, Laffaire M, Ben Ahmed H, Smiti S, Huché-Thélier L, Leduc N (2013) Blue light effects on rose photosynthesis and photomorphogenesis. Plant Biol 15:67–74

    Article  CAS  PubMed  Google Scholar 

  • Alencar NLM, Gomes-Filho E, Innecco R (2012) Cereus jamacaru seed germination and initial seedling establishment as a function of light and temperature conditions. Sci Agric 69:70–74

    Article  Google Scholar 

  • Andrade CTS, Marques JGW, Zappi DC (2006) Utilização medicinal de cactáceas por sertanejos baianos. Rev Bras Pl Med 8:36–42

    Google Scholar 

  • Araujo AG, Pasqual M, Miyata LY, Castro EM, Rocha HS (2009) Qualidade de luz na biometria e anatomia foliar de plântulas de Cattleya loddigesii L. (Orchidaceae) micropropagadas. Cienc Rural 39:2506–2511

    Article  Google Scholar 

  • Araújo DFS, de Oliveira MEG, de Carvalho POAA et al (2021) Food plants in the Caatinga. In: Jacob MCM, Albuquerque UP (eds) Local food plants of Brazil. Ethnobiology. Springer, Cham, pp 225–250

    Chapter  Google Scholar 

  • Arruda E, Melo-De-Pinna GF, Alves M (2005) Anatomy of the vegetative organs of Cactaceae of the caatinga from Pernambuco. Braz J Bot 28:589–601

    Article  Google Scholar 

  • Baer S, Heining M, Schwerna P, Buchholz R, Hübner HO (2016) Optimization of spectral light quality for growth and product formation in different microalgae using a continuous photobioreactor. Algal Res 14:109–115

    Article  Google Scholar 

  • Barrero JM, Jacobsen JV, Talbot MJ, White RG, Swain SM, Garvin DF, Gubler F (2012) Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol 193:376–386

    Article  CAS  PubMed  Google Scholar 

  • Barrero JM, Downie AB, Xu Q, Gubler F (2014) A role for barley Cryptochrome1 in light regulation of grain dormancy and germination. Plant Cell 26:1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:805–817

    Article  Google Scholar 

  • Benítez-Rodríguez JL, Orozco-Segovia A, Rojas-Aréchiga M (2004) Light effect on seed germination of four Mammillaria species from the Tehuacán-Cuicatlán Valley, Central Mexico. Southwest Nat 49:11–17

    Article  Google Scholar 

  • Bian ZH, Yang QC, Liu WK (2014) Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J Sci Food Agric 95:869–877

    Article  PubMed  Google Scholar 

  • Brasil (2009) Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento, Brasília, DF, p 399

  • Carvalho RF, Takaki M, Azevedo RA (2011) Plant pigments: the many faces of light perception. Acta Physiol Plant 33:241–248

    Article  CAS  Google Scholar 

  • Carvalho CBM, Edvan RL, Carvalho MLAM, Reis ALA, Nascimento RR (2018) Uso de cactáceas na alimentação animal e seu armazenamento após colheita. Arch Zootec 67:440–446

    Article  Google Scholar 

  • Cavalcanti NB, Resende GM (2007) Efeito de diferentes substratos no desenvolvimento de mandacaru (Cereus jamacaru P. DC.), facheiro (Pilosocereus pachycladus Ritter), xiquexique (Pilosocereus gounellei (A. Webwr ex K. Schum.) Bly. ex Rowl.) e coroa-de-frade (Melocactus bahiensis Britton & Rose). Rev Caatinga 20:28–35

    Google Scholar 

  • Cenizo VJ, Mazzola MB, Molás BMC, King AG (2013) Características morfológicas y anatómicas de las plántulas de Trichocereus candicans (Cactaceae). Bol Soc Argent Bot 48:453–464

    Article  Google Scholar 

  • Chen XL, Yang QC, Song WP, Wang LC, Guo WZ, Xue XZ (2017) Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Sci Hortic 223:44–52

    Article  CAS  Google Scholar 

  • Cope KR, Snowden MC, Bugbee B (2014) Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broad-spectrum light sources. Photochem Photobiol 90:574–584

    Article  CAS  PubMed  Google Scholar 

  • Costa GF, Marenco RA (2007) Fotossíntese, condutância estomática e potencial hídrico foliar em árvores jovens de andiroba (Carapa guianensis). Acta Amaz 37:229–234

    Article  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2005) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  Google Scholar 

  • Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nature Chem Biol 10:492–501

    Article  CAS  Google Scholar 

  • Cury RK, Randi AM, Santos M (2018) Germinação, desenvolvimento inicial e morfoanatomia de cactáceas epifíticas. Rodriguésia 69:2119–2135

    Article  Google Scholar 

  • de la Rosa Manzano E, Briones O (2010) Germination response of the epiphytic cactus Rhipsalis baccifera (JS Miller) Stearn to different light conditions and water availability. Int J Plant Sci 171:267–274

    Article  Google Scholar 

  • Demotes-Mainard S, Péron T, Corot A et al (2016) Plant responses to red and far-red lights, applications in horticulture. Environ Exp Bot 121:4–21

    Article  CAS  Google Scholar 

  • Dettke GA, Milaneze-Gutierre MA (2008) Anatomia caulinar de espécies epífitas de Cactaceae, subfamília Cactoideae. Hoehnea 35:583–595

    Article  Google Scholar 

  • Dias MC, Zidanes UL, Mascarenhas ARP et al (2023) Mandacaru cactus as a source of nanofibrillated cellulose for nanopaper production. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.123850

    Article  PubMed  Google Scholar 

  • Eckstein A, Zieba P, Gabryś H (2012) Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J Plant Growth Regul 31:90–101

    Article  CAS  Google Scholar 

  • Erickson RO (1976) Modelling of plant growth. Ann Rev Plant Physiol 27:407–434

    Article  Google Scholar 

  • Fan X, Zang J, Xu Z, Guo S, Jiao X, Liu X, Gao Y (2013) Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiol Plant 35:2721–2726

    Article  CAS  Google Scholar 

  • Flores J, Jurado E, Chapa-Vargas L et al (2011) Seeds photoblastism and its relationship with some plant traits in 136 cacti taxa. Environ Exp Bot 71:79–88

    Article  Google Scholar 

  • Gomes VGN, Quirino ZGM, Araujo HFP (2014) Frugivory and seed dispersal by birds in Cereus jamacaru DC. ssp. jamacaru (Cactaceae) in the Caatinga of Northeastern Brazil. Braz J Biol 74:32–40

    Article  CAS  PubMed  Google Scholar 

  • Gubler F, Hughes T, Waterhouse P, Jacobsen J (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol 147:886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes RS, Alves EU, Gonçalves EP, Bruno RLA, Braga Júnior JM, de Medeiros MS (2009) Germinação de sementes de Cereus jamacaru DC. em diferentes substratos e temperaturas. Acta Scientiarum Biol Sci 31:159–164

    Google Scholar 

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220

    Article  Google Scholar 

  • Heo JW, Shin KS, Kim SK, Paek KY (2006) Light quality affects in vitro growth of grape ‘Teleki 5BB.’ J Plant Biol 49:276–280

    Article  Google Scholar 

  • Hernández R, Kubota C (2016) Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. J Exp Bot 121:66–74

    Article  Google Scholar 

  • Hoang HH, Sechet J, Bailly C, Leymarie J, Corbineau F (2014) Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. Plant Cell Environ 37:1393–1403

    Article  CAS  PubMed  Google Scholar 

  • Hofmann N (2014) Cryptochromes and seed dormancy: The molecular mechanism of blue light inhibition of grain germination. Plant Cell 26:846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung CD, Hong CH, Kim SK, Lee KH, Park JY, Nam MW, Choi DH, Lee HI (2016) LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol Plant 38:152

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book, New York

    Google Scholar 

  • Johkan M, Shoji K, Goto F, Hashida SN, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortSci 45:1809–1814

    Article  Google Scholar 

  • Kigel J, Cosgrove DJ (1991) Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties. Plant Physiol 95:1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV (2022) Light quality as a driver of photosynthetic apparatus development. Biophys Rev 14:779–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopsell DA, Sams CE (2013) Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J Am Soc Hortic Sci 138:31–37

    Article  Google Scholar 

  • Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Seropédica

    Google Scholar 

  • Labouriau LG (1983) A germinação das sementes. Secretaria Geral da OEA, Washington

    Google Scholar 

  • Larkum AW (2016) Photosynthesis and light harvesting in algae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae: developments in applied phycology, 6th edn. Springer, Cham, pp 67–87

    Chapter  Google Scholar 

  • Lazzarini LES, Pacheco FV, Silva ST, Coelho AD, Medeiros APR, Bertolucci SKV, Pinto JEBP, Soares JDR (2017) Use of light-emitting diode (LED) in the physiology of cultivated plants—review. Sci Agr Paranaensis 16:137–144

    Google Scholar 

  • Leal Sales MS, Martins LV, Souza I, Meireles de Deus MS, Peron AP (2014) Cereus jamacaru De Candolle (Cactaceae), o mandacaru do nordeste brasileiro. Publicatio UEPG Cienc Biol Saúde 20:135–142

    Article  Google Scholar 

  • Lenth RV, Buerkner P, Herve M, Love J, Miguez F, Riebl H, Singmann H (2022) Estimated marginal means, aka least-squares means. Version 1.7.3 https://CRAN.R-project.org/package=emmeans

  • Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59–64

    Article  CAS  Google Scholar 

  • Li HM, Xu ZG, Tang CM (2010) Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult 103:155–163

    Article  Google Scholar 

  • Li J, Li G, Wang H, Deng XW (2011) Phytochrome signaling mechanisms. Arabidopsis Book. https://doi.org/10.1199/tab.0148

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Deng M, Xiong Y, Coombes A, Zhao W (2014) Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis. Sci World J. https://doi.org/10.1155/2014/347461

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lima-Nascimento AM, Bento da Silva JS, Casas A, Lucena CM, Lucena RFP (2021) Traditional management of Cactaceae: Cereus jamacaru DC as the native cactus most managed by rural communities in areas of Caatinga in Brazil. Ethnobot Res Appl 21:1–12

    Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hortic 150:86–91

    Article  Google Scholar 

  • Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci 5:102–110

    Article  CAS  PubMed  Google Scholar 

  • Lucena CM, Lucena RFP, Costa GM et al (2013) Use and knowledge of Cactaceae in Northeastern Brazil. J Ethnobiol Ethnomed. https://doi.org/10.1186/1746-4269-9-62

    Article  PubMed  PubMed Central  Google Scholar 

  • Maguire JD (1962) Speed of germination-aid selection and evaluation for seedling emergence and vigor. Crop Sci 2:176–177

    Article  Google Scholar 

  • Manivannan A, Soundararajan P, Halimah N, Ho Ko C, Jeong BR (2015) Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic Environ Biotech 56:105–113

    Article  CAS  Google Scholar 

  • Marana JP, Miglioranza É, Fonseca ÉP, Kainuma RH (2008) Índices de qualidade e crescimento de mudas de café produzidas em tubetes. Cienc Rural 38:39–45

    Article  Google Scholar 

  • Massa G, Graham T, Haire T, Flemming C II, Newsham G, Wheeler R (2015) Light-emitting diode light transmission through leaf tissue of seven different crops. HortSci 50:501–506

    Article  Google Scholar 

  • Matsuda R, Ohashi-Kaneko K, Fujiwara K, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Sci Plant Nutr 53:459–465

    Article  CAS  Google Scholar 

  • Mauseth JD (2006) Structure-function relationships in highly modified shoots of Cactaceae. Ann Bot 98:901–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Meiado MV (2012) Germinação de sementes de cactos do Brasil: fotoblastismo e temperaturas cardeais. Informativo ABRATES 22:20–23

    Google Scholar 

  • Meiado MV, Albuquerque LSC, Rocha EA, Rojas-Aréchiga M, Leal IR (2010) Seed germination responses of Cereus jamacaru D.C. ssp. jamacaru (Cactaceae) to environmental factors. Plant Species Biol 25:120–128

    Article  Google Scholar 

  • Meiado MV, Rojas-Aréchiga M, De Siqueira-Filho JA, Leal IR (2016) Effects of light and temperature on seed germination of cacti of Brazilian ecosystems. Plant Species Biol 31:87–97

    Article  Google Scholar 

  • Metallo RM, Kopsell DA, Sams CE, Bumgarner NR (2018) Influence of blue/red versus white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Sci Hortic 235:189–197

    Article  CAS  Google Scholar 

  • Mizrahi YM, Nerd A (1999) Climbing and columnar cacti: new arid land fruit crops. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 358–366

    Google Scholar 

  • Moreno-Jiménez AM, Loza-Cornejo S, Ortiz-Morales M (2017) Efecto de luz LED sobre semillas de Capsicum annuum L. var. serrano. Biotec Veg 17:145–161

    Google Scholar 

  • Muneer S, Kim EJ, Park JS, Lee JH (2014) Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int J Mol Sci 15:4657–4670

    Article  PubMed  PubMed Central  Google Scholar 

  • Noguchi A, Amaki W (2016) Effects of light quality on the growth and essential oil production in Mexican mint. Acta Hortic 1134:239–243

    Article  Google Scholar 

  • Nolasco H, Vega-Villasante F, Romero-Schmidt HL, Diaz-Rondero A (1996) The effects of salinity, acidity, light and temperature on the germination of seeds of cardón (Pachycereus pringlei (S. Wats.) Britton & Rose, Cactaceae). J Arid Environ 33:87–94

    Article  Google Scholar 

  • Novičkovas A, Brazaitytė A, Duchovskis P, Jankauskienė J, Samuolienė G, Virsilė A, Sirtautas R, Bliznikas Z, Zukauskas A (2012) Solid-state lamps (LEDs) for the short wavelength supplementary lighting in greenhouses: experimental results with cucumber. Acta Hortic 927:723–730

    Article  Google Scholar 

  • Ohashi-Kaneko K, Takase M, Kon N, Fujiwara K, Kurata K (2007) Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Cont Biol 45:189–198

    Article  CAS  Google Scholar 

  • Okello RCO, de Visser PHB, Heuvelink E, Marcelis LFM, Struik PC (2015) Light mediated regulation of cell division, endoreduplication and cell expansion. Environ Exp Bot 121:39–47

    Article  Google Scholar 

  • Ortega-Baes P, Rojas-Aréchiga M (2007) Seed germination of Trichocereus terscheckii (Cactaceae): light, temperature and gibberellic acid effects. J Arid Environ 69:169–176

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing, version 4.1.2. R Found Stat Comput, Vienna

  • Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sustain Energy Rev 80:765–773

    Article  Google Scholar 

  • Raulino Silva LFC, Valle LS, Nascimento ARC, Medeiros MFT (2019) Cereus jamacaru DC. (Cactaceae): From 17th century naturalists to modern day scientific and technological prospecting. Acta Bot Bras 33:191–197

    Article  Google Scholar 

  • Rojas-Aréchiga M, Orozco-Segovia A, Vázquez-Yanes C (1997) Effect of light on germination of seven species of cacti from Zapotitlán Valley in Puebla, México. J Arid Environ 36:571–578

    Article  Google Scholar 

  • Sæbø A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult 41:177–185

    Article  Google Scholar 

  • Samuolienė G, Brazaitytė A, Duchovskis P, Viršilė A, Jankauskienė J, Sirtautas R, Novičkovas A, Sakalauskienė S, Sakalauskaitė J (2012) Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Hortic 952:885–892

    Article  Google Scholar 

  • Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotech 32:422–430

    Article  CAS  Google Scholar 

  • Shi H, Zhong S, Mo X, Liu N, Nezames CD, Deng XW (2013) HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. Plant Cell 25:3770–3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva DC, Alves J (1999) Anatomia dos órgãos vegetativos de seis espécies de Pilosocereus Byles & Rowley (Cactaceae). Bol Bot 18:53–60

    Article  Google Scholar 

  • Silva ST, Bertolucci SKV, Da Cunha SHB, Lazzarini LES, Tavares MC, Pinto JEBP (2017) Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell Tissue Organ Cult 129:501–510

    Article  CAS  Google Scholar 

  • Simlat M, Ślęzak P, Moś M, Warchoł M, Skrzypek E, Ptak A (2016) The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci Hortic 211:295–304

    Article  CAS  Google Scholar 

  • Sitrit Y, Golan E, Bar E, Lewinsohn E (2012) Fruit quality evaluation of two new cactus crops for arid zones: Cereus peruvianus and Cereus jamacaru. Isr J Plant Sci 60:335–343

    CAS  Google Scholar 

  • Snowden MC, Cope KR, Bugbee B (2016) Sensitivity of seven diverse species to blue and green light: interactions with photon flux. PLoS ONE. https://doi.org/10.1371/journal.pone.0163121

    Article  PubMed  PubMed Central  Google Scholar 

  • Socolowski F, Vieira DCM, Simão E, Takaki M (2010) Influence of light and temperature on seed germination of Cereus pernambucensis Lemaire (Cactaceae). Biota Neotrop 10:53–56

    Article  Google Scholar 

  • Toyomasu T, Kawaide H, Mitsuhashi W, Inoue Y, Kamiya Y (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol 118:1517–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Lu W, Tong Y, Yang Q (2016) Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00250

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu P, Xiang Y, Zhu H, Xu H, Zhang Z, Zhang C, Zhang L, Ma Z (2009) Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses. Plant Physiol 149:760–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemm E, Willis AJ (1954) The estimation of carbohydrate in plant extracts by anthrone. Biochem J 57:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zara RF, Thomazini MH, Lenz GF (2012) Estudo da eficiência de polímero natural extraído do cacto mandacaru (Cereus jamacaru) como auxiliar nos processos de coagulação e floculação no tratamento de água. Rev Estudos Amb 14:75–83

    Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Fundação de Amparo à Pesquisa do Estado de Alagoas (FAPEAL) for granting the master’s scholarship to the first author. LFD thanks the Sao Paulo Research Foundation (FAPESP) for the postdoctoral fellowship (grant #2022/01560-9).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed to CFGA, JVS; methodology was contributed to CFGA, FSB, JVS; formal analysis and investigation was contributed to CFGA, FSB, LFD; writing—original draft preparation was contributed to CFGA, LFD; writing—review and editing was contributed to LFD, FBPM, JVS; funding acquisition was contributed to FBPM, JVS; supervision was contributed to JVS.

Corresponding author

Correspondence to L. Felipe Daibes.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 141 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.F.G., Daibes, L.F., dos Santos Barbosa, F. et al. Physiological and biochemical alterations driven by light quality during germination and initial growth of the mandacaru cactus (Cereus jamacaru DC.). Braz. J. Bot 47, 55–65 (2024). https://doi.org/10.1007/s40415-023-00972-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-023-00972-y

Keywords

Navigation