Skip to main content
Log in

Data-driven Covariance Tuning of the Extended Kalman Filter for Visual-based Pose Estimation of the Stewart Platform

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper explores the quaternion representation in order to devise an extended Kalman filter approach for pose estimation: inertial measurements are fused with visual data so as to estimate the position and orientation of a six degrees-of-freedom rigid body. The filter equations are described along with a data-driven tuning method that selects the model covariance matrix based on experimental results. Finally, the proposed algorithm is applied to a six degrees-of-freedom Stewart platform, a representative system of a large class of industrial manipulators that could benefit from the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In Algorithm 1, \({\varvec{x}}_k^-\) and \({\varvec{P}}_k^-\) denote a priori estimates, i.e., prior to the application of the correction step.

  2. The normalization of a quaternion in \({\varvec{x}}\) is computed as \({\varvec{q}} \leftarrow {\varvec{q}} / \Vert {\varvec{q}} \Vert \), where \(\Vert \cdot \Vert \) stands for the Euclidian norm and \({\varvec{q}}\) represents the quaternion component of \({\varvec{x}}\) as in (19).

References

  • Araguás, G., Paz, C., Gaydou, D., & Paina, G. P. (2015). Quaternion-based orientation estimation fusing a camera and inertial sensors for a hovering UAV. Journal of Intelligent and Robotic Systems, 77, 37–53.

    Article  Google Scholar 

  • Cardona, M. (2015). A new approach for the forward kinematics of general Stewart–Gough platforms. In Proceedings of the 2015 IEEE thirty fifth central American and panama convention (CONCAPAN XXXv).

  • Colonnier, F., Vedova, L. D., & Orchard, G. (2021). ESPEE: Event-based sensor pose estimation using an extended Kalman filter. Sensors, 21(23), 7840.

    Article  Google Scholar 

  • He, Y., Sun, W., Huang, H., Liu, J., Fan, H., & Sun, J. (2020). PVN3D: A deep point-wise 3D keypoints voting network for 6DoF pose estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR).

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82, 35–45.

    MathSciNet  Google Scholar 

  • Li, S., Li, D., Zhang, C., Wan, J., & Xie, M. (2020). RGB-D image processing algorithm for target recognition and pose estimation of visual servo system. Sensors, 20(2), 430.

    Article  Google Scholar 

  • Ma, Y., Soatto, S., Košecká, J., & Sastry, S. S. (2004). An invitation to 3-D vision: From imagem to geometric models. Springer.

  • Mariottini, G. L., & Prattichizzo, D. (2005). EGT for multiple view geometry and visual servoing: Robotics vision with pinhole and panoramic cameras. IEEE Robotics & Automation Magazine, 12(4), 26–39.

    Article  Google Scholar 

  • Markley, F. L. (2003). Attitude error representations for Kalman filtering. Journal of Guidance, Control, and Dynamics, 26(2), 311–317.

    Article  Google Scholar 

  • Markley, F. L., & Crassidis, J. L. (2014). Fundamentals of spacecraft attitude determination and control. Springer.

  • Nützi, G., Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Fusion of IMU and vision for absolute scale estimation in monocular SLAM. Journal of Intelligent & Robotic Systems, 61(1–4), 287–299.

    Article  Google Scholar 

  • Ratz, S., Dymczyk, M., Siegwart, R., & Dubé, R. (2020). Oneshot global localization: Instant lidar-visual pose estimation. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 5415–5421).

  • Schönberger, J. L., Pollefeys, M., Geiger, A., & Sattler, T. (2018). Semantic visual localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).

  • Sciavicco, L., & Siciliano, B. (2012). Modelling and control of robot manipulators. Springer.

  • Silva, J. G., Filho, J. O. D. A. L., & Fortaleza, E. L. F. (2018). Adaptive extended Kalman filter using exponencial moving average. In Proceedings of the 9th IFAC symposium on robust control design (Vol. 51, pp. 208–211).

  • Sveier, A., & Egeland, O. (2021). Dual quaternion particle filtering for pose estimation. IEEE Transactions on Control Systems Technology, 29(5), 2012–2025.

    Article  Google Scholar 

  • Tayebi, A., & McGilvray, S. (2006). Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transactions on Control Systems Technology, 14(3), 562–571.

    Article  Google Scholar 

  • Tong, X., Li, Z., Han, G., Liu, N., Su, Y., Ning, J., & Yang, F. (2018). Adaptive EKF based on HMM recognizer for attitude estimation using MEMS MARG sensors. IEEE Sensors Journal, 18(8), 3299–3310.

    Article  Google Scholar 

  • Yang, C., Liu, Y., & Zell, A. (2020). RCPNet: Deep-learning based relative camera pose estimation for UAVs. In 2020 International conference on unmanned aircraft systems (ICUAS) (pp. 1085–1092).

  • Yuen, K. V., Liang, P. F., & Kuok, S. C. (2013). Online estimation of noise parameters for Kalman filter. Structural Engineering and Mechanics, 47(3), 361–381.

    Article  Google Scholar 

  • Zhang, H., & Ye, C. (2020). A visual positioning system for indoor blind navigation. In 2020 IEEE international conference on robotics and automation (ICRA) (pp. 9079–9085).

  • Zhang, Y., Bian, C., & Gao, J. (2020). An unscented Kalman filter-based visual pose estimation method for underwater vehicles. In 2020 3rd international conference on unmanned systems (ICUS) (pp. 663–667).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélio T. Salton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. T. Salton acknowledges the support from CNPq Brazil under Grant 306214/2018-0.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salton, A.T., Pimentel, G.A., Melo, J.V. et al. Data-driven Covariance Tuning of the Extended Kalman Filter for Visual-based Pose Estimation of the Stewart Platform. J Control Autom Electr Syst 34, 720–730 (2023). https://doi.org/10.1007/s40313-023-01006-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-023-01006-4

Keywords

Navigation