Skip to main content

A Novel Approach for Robust and Effective Pose Estimation via Visual-Inertial Fusion

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12608))

Included in the following conference series:

  • 531 Accesses

Abstract

This paper proposes a visual-inertial sensor fusion method to perform fast, robust and accurate pose estimation. The fusion framework includes two major modules: orientation fusion and position fusion. The orientation fusion is performed via the combination of vision and IMU (Inertial Measurement Unit) measurement. The position fusion is implemented via the combination of visual position measurement and accelerometer measurement using a proposed adaptive complementary filter. The proposed framework is robust to visual sensor failures from a poor illumination, occlusion or over-fast motion and is efficient in computation due to the adoption of complementary filters. Another important advantage is the error-reducing feature: the direction of the optical axis can be automatically compensated by Madgwick filter with inclination taken as magnetic distorsion. The performance is evaluated with a dual-arm manipulator. The results show a better pose estimation than visual sensor alone in terms of accuracy and robustness to vision failures.

Supported by the Key R&D Program of Zhejiang Province (2020C01026).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ligorio, G., Sabatini, A.M.: A novel Kalman filter for human motion tracking with an inertial-based dynamic inclinometer. IEEE Trans. Biomed. Eng. 62(8), 2033–2043 (2015)

    Article  Google Scholar 

  2. Lee, W.W., Yen, S.-C., Tay, E.B.A., Zhao, Z., Xu, T.M., Ling, K.K.M., Ng, Y.-S., Chew, E., Cheong, A.L.K., Huat, G.K.C.: A smartphone-centric system for the range of motion assessment in stroke patients. IEEE J. Biomed. Health Inform. 18(6), 1839–1847 (2014)

    Article  Google Scholar 

  3. Daponte, P., De Vito, L., Riccio, M,. Sementa, C.: Experimental comparison of orientation estimation algorithms in motion tracking for rehabilitation. In: Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on IEEE pp. 1–6 (2014)

    Google Scholar 

  4. Tian, Y., Hamel, W.R., Tan, J.: Accurate human navigation using wearable monocular visual and inertial sensors. IEEE Trans. Instrum. Measur. 63(1), 203–213 (2014)

    Article  Google Scholar 

  5. Pierleoni, P., Belli, A., Palma, L., Pellegrini, M., Pernini, L., Valenti, S.: A high reliability wearable device for elderly fall detection. IEEE Sens. J. 15(8), 4544–4553 (2015)

    Article  Google Scholar 

  6. Hong, S.K.: Fuzzy logic based closed-loop strapdown attitude system for unmanned aerial vehicle (UAV). Sens. Actuators A Phys. 107(2), 109–118 (2003)

    Article  Google Scholar 

  7. Hyde, R.A., Ketteringham, L.P., Neild, S.A., Jones, R.J.: Estimation of upper-limb orientation based on accelerometer and gyroscope measurements. IEEE Trans. Biomed. Eng. 55(2), 746–754 (2008)

    Article  Google Scholar 

  8. Bachmann, E.R., McGhee, R.B., Yun, X., Zyda, M.J.: Inertial and magnetic posture tracking for inserting humans into networked virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 9–16. ACM (2001)

    Google Scholar 

  9. Mahony, R., Hamel, T., Pflimlin, J.-M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53(5), 1203–1218 (2008)

    Article  MathSciNet  Google Scholar 

  10. Madgwick, S.O., Harrison, A.J., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–7. IEEE (2011)

    Google Scholar 

  11. Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014)

    Article  Google Scholar 

  12. Armesto, L., Tornero, J., Vincze, M.: Fast ego-motion estimation with multi-rate fusion of inertial and vision. Int. J. Robot. Res. 26(6), 577–589 (2007)

    Article  Google Scholar 

  13. Simanek, J., Reinstein, M., Kubelka, V.: Evaluation of the EKF-based estimation architectures for data fusion in mobile robots. IEEE/ASME Trans. Mechatron. 20(2), 985–990 (2015)

    Article  Google Scholar 

  14. Cavallo, A., et al.: Experimental comparison of sensor fusion algorithms for attitude estimation. IFAC Proc. Vol. 47(3), 7585–7591 (2014)

    Article  Google Scholar 

  15. Nyqvist, H.E., Skoglund, M.A., Hendeby, G., Gustafsson, F.: Pose estimation using monocular vision and inertial sensors aided with ultra wide band. In: Indoor Positioning and Indoor Navigation (IPIN), 2015 International Conference on IEEE, pp. 1–10 (2015)

    Google Scholar 

  16. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  17. Qiu, M., Jia, Z., Xue, C., Shao, Z., Sha, E.H.-M.: Voltage assignment with guaranteed probability satisfying timing constraint for real-time multiproceesor DSP. J. VLSI Signal Process. Syst. Signal Image Video Technol. 46(1), 55–73 (2007)

    Article  Google Scholar 

  18. Zhang, Q., Huang, T., Zhu, Y., Qiu, M.: A case study of sensor data collection and analysis in smart city: provenance in smart food supply chain. Int. J. Distrib. Sens. Netw. 9(11), 382132 (2013)

    Google Scholar 

  19. Chen, M., Zhang, Y., Qiu, M., Guizani, N., Hao, Y.: SPHA: smart personal health advisor based on deep analytics. IEEE Commun. Mag. 56(3), 164–169 (2018)

    Article  Google Scholar 

  20. Sahloul, H.: Ros Wiki: 3D pose estimation ROS package using ArUco marker boards (2016). http://wiki.ros.org/ar_sys

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Tong , Yanqi Li , Ningbo Gu , Qingfeng Li or Tao Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, K., Li, Y., Gu, N., Li, Q., Ren, T. (2021). A Novel Approach for Robust and Effective Pose Estimation via Visual-Inertial Fusion. In: Qiu, M. (eds) Smart Computing and Communication. SmartCom 2020. Lecture Notes in Computer Science(), vol 12608. Springer, Cham. https://doi.org/10.1007/978-3-030-74717-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74717-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74716-9

  • Online ISBN: 978-3-030-74717-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics