Skip to main content

Advertisement

Log in

Sensorless Nonlinear Control of Wind Energy Systems with Doubly Fed Induction Generator

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

The problem of controlling doubly fed induction generators (DFIG) associated with wind turbines is addressed. The control objective is twofold: maximum power point tracking and reactive power regulation in the DFIG. Unlike previous works, we seek the achievement of this control objective without resorting to physical sensors of mechanical variables (e.g., wind turbine velocity and DFIG rotor speed). Interestingly, wind velocity is also not assumed to be accessible to measurements. The control problem is dealt with using an output feedback controller designed on the basis of the nonlinear state-space representation of the controlled system. The controller is constituted of a high-gain nonlinear state observer and a nonlinear sliding state feedback mode. Using tools from Lyapunov’s stability, it is formally shown that the closed-loop control system, expressed in terms of the state estimation errors and the output-reference tracking errors, enjoys a semi-global practical stability. Accordingly, it is possible to tune the controller design parameters so that it meets its objectives with an arbitrarily high accuracy, whatever the initial conditions are. These theoretical results are confirmed by simulations involving wide range variation of the wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Akel, F., Ghennam, T., Berkouk, E. M., & Laour, M. (2014). An improved sensorless decoupled power control scheme of grid connected variable speed wind turbine generator. Energy Conversion and Management, 78, 584–594.

    Article  Google Scholar 

  • Boizot, N., Busvelle, E., & Gauthier, J. P. (2010). An adaptive high-gain observer for nonlinear systems. Automatica, 46(9), 1483–1488.

    Article  MathSciNet  MATH  Google Scholar 

  • Dida, A., & Benattous, D. (2015). Modeling and control of DFIG through back-to-back five levels converters based on neuro-fuzzy controller. Journal of Control, Automation and Electrical Systems, 26(5), 506–520.

    Article  Google Scholar 

  • El Fadili, A., Giri, F., El Magri, A., Lajouad, R., & Chaoui, F. (2013). Adaptive control strategy with flux reference optimization for sensorless induction motors. Control Engineering Practice, 26, 91–106.

  • Kerrouchea, K., Mezouarb, A., & Belgacema, K. (2013). Decoupled control of doubly fed induction generator by vector control for wind energy conversion system. Energy Procedia, 42, 239–248.

    Article  Google Scholar 

  • Liao, Y., Li, H., Yao, J., & Zhuang, K. (2011). Operation and control of a grid-connected DFIG-based wind turbine with series grid side converter during network unbalance. Electric Power Systems Research, 81, 228–236.

    Article  Google Scholar 

  • Maurício, B., Salles, C., Hameyer, K., Cardoso, José R., Grilo, Ahda P., & Rahmann, C. (2010). Crowbar system in doubly fed induction wind generators. Energies, 3, 738–753.

    Article  Google Scholar 

  • Ouadi, H., Giri, F., De leon-morales, J., & Dugard, L. (2005). High-gain observer design for induction motor with nonlinear magnetic characteristic. IFAC World congress, Prague, Czech July 4–8, Prague.

  • Patnaik, R. K., & Dash, P. K. (2015). Fast adaptive finite-time terminal sliding mode power control for the rotor side converter of the DFIG based wind energy conversion system. Sustainable Energy, Grids and Networks, 1, 63–84.

    Article  Google Scholar 

  • Rocha, R. (2011). A sensorless control for a variable speed wind turbine operating at partial load. Renewable Energy, 36, 132–141.

    Article  Google Scholar 

  • Sarrias-Mena, Raúl, Fernández-Ramírez, L. M., García-Vázquez, C. A., & Jurado, F. (2014). Fuzzy logic based power management strategy of a multi-MW doubly-fed induction generator wind turbine with battery and ultracapacitor. Energy, 70, 561–576.

    Article  Google Scholar 

  • Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  • Suwan, M., Neumann, T., Feltes, C., & Erlich, I. (2012, July). Educational experimental rig for Doubly-Fed Induction Generator based wind turbine. In Power and Energy Society General Meeting, 2012 IEEE, (pp. 1–8).

  • Utkin, V. I. (1978). Sliding modes and their application in variable structure systems. Moscow: MIR.

    MATH  Google Scholar 

  • Yang, B., Jiang, L., Wang, L., Yao, W., & Wu, Q. (2016). Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. Electrical Power and Energy Systems, 74, 429–436.

    Article  Google Scholar 

  • Zamanifar, M., Fani, B., Golshan, M. E. H., & Karshenas, H. R. (2014). Dynamic modeling and optimal control of DFIG wind energy systems using DFT and NSGA-II. Electric Power Systems Research, 108, 50–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barra.

Appendix: Development and Bounding of the Disturbance Terms in (74)

Appendix: Development and Bounding of the Disturbance Terms in (74)

Bounding Term 1:

The first term of (74) satisfies the following inequality

$$\begin{aligned} \Vert 2 e_o ^TP\dot{\varGamma }\left( s \right) {\varGamma ^{ - 1}} \left( s \right) {e_o} \Vert \le 2 \lambda _{\mathrm{max}}\Vert \dot{\Gamma }\left( \mathrm{s}\right) \Vert \Vert \Gamma ^{-1}\left( s \right) \Vert \Vert e_o^2\Vert \nonumber \\ \end{aligned}$$
(86)

Then with assumptions A1–A3 and remark 2, using (93), inequality (86) can be rewritten as

$$\begin{aligned}&\Vert 2 e_o^TP\dot{\varGamma } \left( s \right) \varGamma ^{-1}\left( s \right) {e_o}\Vert \nonumber \\&\quad \le 2{\lambda _{\mathrm{max}}}{L_{\Gamma }^{-1}} \Vert e_o^2\Vert \left( \alpha _{10} + \alpha _{11}\left| e_i \right| + \alpha _{12}\left| e_2 \right| \right) \end{aligned}$$
(87)

where

$$\begin{aligned}&\bullet \quad \alpha _{10} =\left\| \left[ \begin{array}{cc} {0_2 }&{} {O_2 } \\ {O_2 }&{} \rho \\ \end{array} \right] \right\| \hbox { with } \rho =\left[ \begin{array}{cc} {\alpha \rho _{11} }&{} {\frac{\alpha }{\beta }\rho _{21} } \\ {-\alpha \rho _{21} }&{} {\frac{\alpha }{\beta }\rho _{11} } \\ \end{array} \right] \end{aligned}$$
(88)
$$\begin{aligned}&\left\{ \begin{array}{l} \rho _{11} = \left( {\frac{{{L_s}{\omega _s}}}{{m{V_s}}}{k_1}{{\ddot{\varOmega } }_{ref\_M}} + {g_{3\_M}}{{\varOmega } _{\mathrm{max}}}} \right) \\ \rho _{21} = - \frac{{{L_s}}}{{{V_s}{M_{\mathrm{sr}}}{k_2}}}{d_2}\hbox {sign}\left( {{S_2}} \right) \\ \quad \qquad - {{\varOmega } _{\mathrm{max}}} \left( {\frac{{a{M_{\mathrm{sr}}}}}{\sigma } + \frac{1}{\sigma }} \right) p I_{rqref\_M} - \frac{{{L_s}}}{{{V_s}{M_{\mathrm{sr}}}}}{\dot{Q}_{ref\_M}} \end{array} \right. \end{aligned}$$
(89)
$$\begin{aligned}&\hbox {with }g_{3\_M} \nonumber \\&\quad =\frac{V_s a}{\omega _s \sigma }p+\left( {\frac{1}{\sigma }p-\frac{aM_{\mathrm{sr}} }{\sigma }} \right) \nonumber \\&\qquad \frac{V_s }{\omega _s M_{\mathrm{sr}} }+g_4 Q_{ref\_M} \end{aligned}$$
(90)

and

$$\begin{aligned}&\bullet \quad \alpha _{11} \!=\!\left\| \begin{array}{cccc} 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} {-\alpha d_3 }&{} {-\frac{\alpha }{\beta }\left( {\frac{aM_{\mathrm{sr}} }{\sigma }+\frac{1}{\sigma }} \right) p{\varOmega } _{\mathrm{max}} } \\ 0&{} 0&{} {\alpha \left( {\frac{aM_{\mathrm{sr}} }{\sigma }+\frac{1}{\sigma }} \right) p{\varOmega } _{\mathrm{max}} }&{} {-\frac{\alpha }{\beta }d_3 } \end{array}\right\| \nonumber \\ \end{aligned}$$
(91)
$$\begin{aligned}&\bullet \quad \alpha _{12} \!=\!\left\| \begin{array}{cccc} 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} 0&{} 0 \\ 0&{} 0&{} {\alpha \left[ {g_4 {\varOmega } _{\mathrm{max}} } \right] }&{} 0 \\ 0&{} 0&{} 0&{} {\frac{\alpha }{\beta }\left[ {g_4 {\varOmega } _{\mathrm{max}} } \right] } \\ \end{array}\right\| \end{aligned}$$
(92)
$$\begin{aligned}&\hbox {and }\alpha =\frac{M_{\mathrm{sr}} }{\sigma L_s }p\left( {1-aM_{\mathrm{sr}} } \right) \end{aligned}$$
(93)

Using (29), (66), and using Young’s inequality, (87) can be written as follows:

$$\begin{aligned} Term1\le & {} \left( \frac{\lambda _{\mathrm{max}} }{\lambda _{\mathrm{min}} }L_{\Gamma ^{-1}} \alpha _1 \right) ^{2}V_{cT} \nonumber \\&+\,2\frac{\lambda _{\mathrm{max}} }{\lambda _{\mathrm{min}} }L_{\Gamma ^{-1}} \alpha _{10} V_o +V_o \end{aligned}$$
(94)

With

$$\begin{aligned} \alpha _1 =\sqrt{2}\,\hbox {sup}\left( {\alpha _{11} ,\frac{\alpha _{12} }{k_2 }} \right) \end{aligned}$$
(95)

Bounding Term 2:

From (22) and (26), one has:

$$\begin{aligned}&\Vert \Gamma \left( \hbox {s} \right) \Delta _{\theta } \partial \left( {x_4 ,x_3 ,s} \right) \Vert \nonumber \\&\quad \le {\left\| \begin{array}{c} {T_a \varphi _{\mathrm{max}} } \\ {T_a \varphi _{\mathrm{max}} } \\ {\frac{\gamma _{31} }{\theta }+\frac{\gamma _{32} }{\theta }e_1 } \\ {\frac{\gamma _{31} }{\theta }+\frac{\gamma _{32} }{\theta }e_1 } \\ \end{array}\right\| }\end{aligned}$$
(96)
$$\begin{aligned} \hbox {with }\gamma _{31}= & {} \beta \varphi _{\mathrm{max}} \left( {\frac{T_a }{J}+\frac{f}{J}{\varOmega } _{ref\_M} } \right) ,\nonumber \\ \gamma _{32}= & {} \beta \varphi _{\mathrm{max}} \frac{f}{J}\end{aligned}$$
(97)
$$\begin{aligned} \bullet \quad \alpha _{20}= & {} T_{Max} \varphi _{\mathrm{max}} +\left| {\frac{\gamma _{31} }{\theta }} \right| ,\nonumber \\ \alpha _{21}= & {} \gamma _{32} \end{aligned}$$
(98)

Using (29), (66), and using Young’s inequality, inequality (96) can be written in the following form:

$$\begin{aligned} Term2\le & {} 4\frac{\lambda _{\mathrm{max}} }{\sqrt{\lambda _{\mathrm{min}} }}\alpha _{20} \sqrt{V_o }\nonumber \\&+\,\left( {2\frac{\lambda _{\mathrm{max}} }{\sqrt{\lambda _{\mathrm{min}} }}\frac{\sqrt{2}\alpha _{21} }{\theta k_1 }} \right) ^{2}V_o +V_{cT} \end{aligned}$$
(99)

Bounding Term 3:

Using (31) and (36)

$$\begin{aligned}&S^{T}M_r \left( y \right) \tilde{x} \nonumber \\&\quad =S_1 \frac{\theta K_2 }{\beta \varphi _{\mathrm{max}}^2 }\varphi _{\mathrm{rq}} \tilde{x} _1 \nonumber \\&\qquad -S_1 \frac{\theta K_2 }{\beta \varphi _{\mathrm{max}}^2 }\varphi _{\mathrm{rd}} \tilde{x} _2 \end{aligned}$$
(100)

introducing (27) in (100), one has:

$$\begin{aligned}&S^{T}M_r \left( y \right) \tilde{x} \nonumber \\&\quad =k_1 \frac{\theta K_2 }{\beta \varphi _{\mathrm{max}}^2 }\varphi _{\mathrm{rq}} N_1 \varDelta _{\theta } ^{-1} \varGamma \left( s \right) ^{-1}e_o e_1 \nonumber \\&\qquad -k_1 \frac{\theta K_2 }{\beta \varphi _{\mathrm{max}}^2 }\varphi _{\mathrm{rd}} N_2 \varDelta _{\theta } ^{-1} \varGamma \left( s \right) ^{-1}e_o e_1\end{aligned}$$
(101)
$$\begin{aligned}&\hbox {where }N_1 =\left[ \begin{array}{cccc} 1&{} 0&{} 0&{} 0 \\ \end{array} \right] ; \hbox {N}_2 =\left[ \begin{array}{cccc} 0&{} 1&{} 0&{} 0 \\ \end{array} \right] \end{aligned}$$
(102)

On the other hand, using Eqs. (22) and (34)–(35) one has:

$$\begin{aligned} N_1 \Delta _{\theta }^{-1} \Gamma \left( \hbox {s} \right) ^{-1}= & {} \left[ \begin{array}{cccc} 1&{} 0&{} 0&{} 0 \\ \end{array} \right] \end{aligned}$$
(103)
$$\begin{aligned} N_2 \Delta _{\theta }^{-1} \Gamma \left( \hbox {s} \right) ^{-1}= & {} \left[ \begin{array}{cccc} 0&{} 1&{} 0&{} 0 \\ \end{array} \right] \end{aligned}$$
(104)

To avoid that the observer gain \(\theta \) boosts this disturbing term, one can choose the observer design parameter \(K_2 =\frac{1}{\theta ^{2}}\)

Then term 3 becomes:

$$\begin{aligned} Term\,\,3\le \alpha _{30} \Vert e_o\Vert \left| {e_1 } \right| \le \left( {\frac{\alpha _{30} }{2\theta \sqrt{\lambda _{\mathrm{min}} }}\frac{\sqrt{2}}{k_1 }} \right) ^{2}V_o +V_{cT}\nonumber \\ \end{aligned}$$
(105)

with

$$\begin{aligned} \bullet \quad \alpha _{30} =2\,\,Sup\left( {\frac{k_1 }{\beta \varphi _{\mathrm{max}}^2 }\varphi _{\mathrm{max}} \Vert N_1\Vert ,\frac{k_1 }{\beta \varphi _{\mathrm{max}}^2 }\varphi _{\mathrm{max}} \Vert N_2\Vert } \right) \nonumber \\ \end{aligned}$$
(106)

Bounding Term 4:

Using remark 3, (57) and (63)–(64), the four terms of inequality (74) will be discussed separately.

$$\begin{aligned}&\left| {g_3 \left( s \right) x_3 e_i } \right| \le g_{3\_M} {\varOmega } _{\mathrm{max}} \left| {e_i } \right| \end{aligned}$$
(107)
$$\begin{aligned}&\left| {g_4 x_3 e_{2} e_i } \right| \le g_4 {\varOmega } _{\mathrm{max}} \left| {e_i } \right| \left| {e_2 } \right| \end{aligned}$$
(108)
$$\begin{aligned}&\left| {g_1 x_3 e_{2} e_i } \right| \le g_1 {\varOmega } _{\mathrm{max}} \left| {e_i } \right| \left| {e_2 } \right| \end{aligned}$$
(109)
$$\begin{aligned}&\left| {g_1 I_{\mathrm{rqref}} x_3 e_2 } \right| \le g_1 I_{rqref\_M} {\varOmega } _{\mathrm{max}} \left| {e_i } \right| \end{aligned}$$
(110)

Using (29), (66), inequalities (107110) can take the form:

$$\begin{aligned} Term\,\,4\le \sqrt{2}\alpha _{40} \sqrt{V_{cT} }+\frac{2\alpha _{41} }{k_2 }V_{cT} \end{aligned}$$
(111)

where

$$\begin{aligned}&\bullet \quad \alpha _{40} =Sup\left( {g_{3\_M} \Omega _{\mathrm{max}} ,g_1 I_{rqref\_M} {\varOmega } _{\mathrm{max}} } \right) \end{aligned}$$
(112)
$$\begin{aligned}&\bullet \quad \alpha _{41} =Sup\left( {g_4 {\varOmega } _{\mathrm{max}} ,g_1 \Omega _{\mathrm{max}} } \right) \end{aligned}$$
(113)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barra, A., Ouadi, H., Giri, F. et al. Sensorless Nonlinear Control of Wind Energy Systems with Doubly Fed Induction Generator. J Control Autom Electr Syst 27, 562–578 (2016). https://doi.org/10.1007/s40313-016-0263-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-016-0263-1

Keywords

Navigation