Skip to main content

Advertisement

Log in

Modeling and Control of DFIG Through Back-to-Back Five Levels Converters Based on Neuro-Fuzzy Controller

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper deals with the power generation control in variable speed wind turbine. In this context, the wind energy conversion system (WECS) is equipped with a doubly fed induction generator (DFIG) and back-to-back five-level neutral-point-clamped converters in the rotor circuit. The modeling and the control of the five-level converter is presented. A vector control of the rotor side converter allows independent control of the stator active and reactive power and optimal speed tracking for maximum power capture from the wind. An adaptive neuro-fuzzy inference system is proposed as alternative of Mamdani type fuzzy controller to improve the robustness and reject any disturbance in the system. Three neuro-fuzzy controllers (NFCs) are used to control the rotational speed, and the stator active and reactive power. Another fuzzy logic system is proposed as a PI gain tuner in the DC-link voltage control loop to improve the dynamic response and robustness of the DC-link voltage control. In purpose to prove the performances of the global system, simulation was carried out in Matlab–Simulink software environment with 1.5MW DFIG-WECS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adabi, M. E., & Vahedi, A. (2011). A hysteresis current control strategy for common- mode voltage reduction in AC drive systems. International Review of Electrical Engineering, 6(2), 607.

    Google Scholar 

  • Adabi, M. E., & Vahedi, A. (2013). A survey of shaft voltage reduction strategies for induction generators in wind energy applications. Renewable Energy, 50, 177–187.

    Article  Google Scholar 

  • Akhmatov, V. (2003). Analysis of dynamic behavior of electric Power systems with large amount of wind power. PhD Thesis, Electric power Engineering Orsted-D’TU, Technical University of Denmark, Kgs. Lyngby, Denmark.

  • Bellmunt, O. G., Ferre, A. J., Sumper, A., & Jane, J. B. (2008). Ride-through control of a doubly fed induction generator under unbalanced voltage sags. IEEE Transactions on Energy Conversion, 23, 1036–1045.

    Article  Google Scholar 

  • Belmokhtar, K., Mamadou. Doumbia, L., & Agbossou, K. (2012). Modelling and fuzzy logic control of DFIG based wind energy conversion systems. In International symposium on industrial electronics (ISIE) (pp. 1888–1893).

  • Bezza, M., Moussaoui, B. E. L., & Fakkar, A. (2012). Sensorless MPPT fuzzy controller for DFIG wind turbine. Energy Procedia, 18, 339–348.

    Article  Google Scholar 

  • Bouaouiche, T., & Machmoum, M. (2006). Control and stability analysis of a doubly fed induction generator. In 12th international power electronics and motion control conference (EPE-PEMC), Portoroz (pp. 1602–1607).

  • Duan, Q., Hao, F., & Feng, S. (2008). Adaptive fuzzy control used in DFIG VSCF wind power generator system. In IEEE 7th world congress on intelligent control and automation, Chongqing, China (pp. 29–32).

  • El-Aimani S. (2009). Practical identification of a DFIG based wind generator model for grid assessment. IEEE international conference on multimedia computing and systems (ICMCS ’09) (pp. 278–285).

  • El-Aimani, S., Francois, B., Minne, F., & Robyns, B. (2003). Modeling and simulation of doubly fed induction generators for variable speed wind turbines integrated in a distribution network. In 10th European conference on power electronics and applications, Toulouse, France.

  • Emilio, J. B., Santiago, C., Rodriguez, F. J., Hernandez, A., & Espinosa, F. (2008). Design of a back-to-back NPC converter interface for wind turbines with squirrel-cage induction generator. IEEE Transactions on Energy Conversion, 23, 932–945.

    Article  Google Scholar 

  • Forchetti, D. G., Solsona, J. A., Garcia, G. O., & Valla, M. I. (2007). A control strategy for stand-alone wound rotor induction generator. Electric Power Systems Research, 77, 163–169.

    Article  Google Scholar 

  • Galvez-Carillo, M. G. (2011). Sensor fault diagnosis for wind-driven doubly-fed induction generators. PhD thesis, Free university of Belgium (ULB), Brussels, Belgium.

  • Ghedamsi, K., Aouzellag, D., & Berkouk, E. M. (2008). Control of wind generator associated to a flywheel energy storage system. Renewable Energy, 21, 45–56.

    Google Scholar 

  • Guedouani, R., Faila, B., Berkouk, E. M., & Bouchrit, M. S. (2012). New control strategy of three-phase five-level NPC rectifier-inverter system for induction machine drive. Energy Procedia, 18, 1382–1391.

    Article  Google Scholar 

  • Hu, J., He, Y., Xu, L., & Williams, B. W. (2009). Improved control of DFIG systems during network unbalance using PI-R current regulators. IEEE Transactions on Industrial Electronics, 56(2), 439–451.

    Article  Google Scholar 

  • Hu, J., & He, Y. (2006). Dynamic modeling and robust current control of wind turbine used DFIG during AC voltage dip. Journal of Zhejiang University Science A, 7(10), 1757–1764.

    Article  MathSciNet  MATH  Google Scholar 

  • Hu, J., Nian, H., Hu, B., He, Y., & Zhu, Z. Q. (2010). Direct active and reactive power regulation of DFIG using sliding-mode control approach. IEEE Transactions on energy conversion, 25(4), 1028–1039.

    Article  Google Scholar 

  • Jabr, H. M., & Narayan Kar, C. (2007). Neuro-fuzzy vector control for doubly-fed wind driven induction generator. In IEEE electrical power conference, Canada (EPC) (pp. 236–241).

  • Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23(3), 665–684.

  • Jiabing, H., Yikang, H., Lie, X., & Barry, W. (2009). Improved control of DFIG systems during network unbalance using PI–R current regulators. IEEE Transactions on Industrial Electronics, 56(2), 439–451.

    Article  Google Scholar 

  • Lindgren, M., & Svensson, J. (1995). Connecting fast switching voltage source converters to the grid-harmonic distortion and its reduction. IEEE Stockholm power tech conference, Stockholm, Sweden (pp. 191–195).

  • Lindholm, M. (2003). Doubly fed drives for variable speed wind turbines-A 40 kW laboratory setup. PhD thesis, Technical University of Denmark, Lyngby, Denmark.

  • Merahi, F., & Berkouk, E. M. (2013). Back-to-back five-level converters for wind energy conversion system with DC-bus imbalance minimization. Renewable Energy, 60, 137–149.

    Article  Google Scholar 

  • Merahi, F., & Berkouk, E. M. (2011). Five level converters cascade integrated in wind chain. In 12th international conference on science and techniques of automatic control & computer engineering (STA’11) (pp. 1–6).

  • Miloudi, A., Al-Radadi, A. E., & Draou, A. D. (2007). A variable gain PI controller used for speed control of a direct torque neuro fuzzy controlled induction machine drive. Turkish Journal of Electrical Engineering and Computer Sciences, 15(1), 37–49.

    Google Scholar 

  • Mishra, S., Mishra, Y., Li, F., & Dong, Z. Y. (2009). TS-fuzzy controlled DFIG based wind energy conversion systems. In Power & energy society general meeting (PES ’09) (pp. 1–7).

  • Morren, J., deHaan, S. W. H., Bauer, P., & Pierik, J. T. G. (2003). Comparison of complete and reduced models of a wind turbine using doubly-fed induction generator. In 10th European conference on power electronics and applications,Toulouse, France.

  • Muller, S., Deicke, M., & De Doncker, R. W. (2002). Doubly fed induction generator systems for wind turbines. IEEE Industry Applications Magazine, 8(3), 26–33.

    Article  Google Scholar 

  • Nabae, A., Akagi, H., & Takahashi, I. (1981). A new neutral-point-clamped PWM inverter. IEEE Transactions on Industry Applications, 17(5), 518–523.

    Article  Google Scholar 

  • Pena, R., Clare, J. C., & Asher, G. M. (1996). Doubly fed induction generator using back-to-back PWM converter and is application to variable-speed wind-energy generation. IEE Proceedings-Electric Power Applications, 143(3), 231–241.

    Article  Google Scholar 

  • Qiao, W., Zhou, W., Aller, J. M., & Harley, R. G. (2008). Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. IEEE Transactions on Power Electronics, 23(3), 1156–1169.

    Article  Google Scholar 

  • Raoufi, M., & Lamchich, M. T. (2004). Average current mode control of a voltage source inverter connected to the grid: Application to different filter cells. Journal of Electrical Engineering, 55(3–4), 77–82.

    Google Scholar 

  • Ren, Y., Li, H., Zhou, J., An, Z., Liu, J., Hu, H., & Liu, H. (2009). Dynamic performance analysis of grid-connected DFIG based on fuzzy logic control. IEEE international conference on mechatronics and automation, Changchun, China (pp. 719–723).

  • Santiago, A. V., & Maria, I. V. (2012). Direct connection of WECS system to the MV grid with multilevel converters. Renewable Energy, 41, 336–344.

    Article  Google Scholar 

  • Serban, I. (2003). Direct power control of doubly fed induction generators. Aalborg, Demark: Institute of Energy Technology (IET).

    Google Scholar 

  • Talha, A., Mahmoudi, M. O., Beriber, D., & Berkouk, E. M. (2004). Study and control of two two-level PWM rectifiers-clamping bridge-two three-level NPC VSI cascade, application to double stator induction machine. IEEE power electronics specialists conference (PESC’04) (pp. 3894–3899).

  • Tekwani, P. N., Kanchan, R. S., & Gopakumark, K. (2005). Five-level inverter scheme for an induction motor drive with simultaneous elimination of common-mode voltage and DC-link capacitor voltage imbalance. IEE Proceedings Electric Power Applications, 152, 1539–1555.

    Article  Google Scholar 

  • Yamamoto, M., & Motoyoshi, O. (1991). Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Transactions on Power Electronics, 6, 624–629.

    Article  Google Scholar 

  • Yuan, G., Chai, J., & Li, Y. (2004). Vector control and synchronization of doubly fed induction wind generator system. 4th international power electronics and motion control conference Xi’an (Vol. 2, pp. 886–890).

  • Zhao, Y., Zou, XD., Xu, YN., Kang, Y., & Chen, J. (2006). Maximal power point tracking under speed-mode control for wind energy generation system with doubly fed introduction generator. In 5th international power electronics and motion control conference (IPEMC 2006), Shanghai (pp. 1–5).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhak Dida.

Appendix

Appendix

See Tables 6 and 7.

Table 6 Detailed parameters of DFIG from Bellmunt et al. (2008)
Table 7 Detailed parameter of wind turbine from Bellmunt et al. (2008)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dida, A., Benattous, D. Modeling and Control of DFIG Through Back-to-Back Five Levels Converters Based on Neuro-Fuzzy Controller. J Control Autom Electr Syst 26, 506–520 (2015). https://doi.org/10.1007/s40313-015-0190-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0190-6

Keywords

Navigation