Skip to main content

Advertisement

Log in

Adaptive Fuzzy Control Scheme for Variable-Speed Wind Turbines Based on a Doubly-Fed Induction Generator

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a new adaptive fuzzy control scheme for grid-connected variable-speed wind turbines (WT) based on a doubly-fed induction generator (DFIG). The proposed controller simultaneously guarantees two independent control objectives: (1) DFIG torque control allowing the extraction of maximum available power from the wind, and (2) control of the stator reactive power to maintain a desirable power factor according to the grid requirements. Unlike many existing control designs developed for DFIG-based WT, the design of the proposed controller is based on nonlinear coupled models of WT, without attempting approximate linearization. To improve performance in operating conditions, the model uncertainties and the nonlinear functions appearing in the tracking errors dynamics are reasonably approximated by adaptive fuzzy systems. It is mathematically proven that the proposed adaptive fuzzy control scheme can guarantee that all signals of the closed-loop system are uniformly ultimately bounded. Simulation results show that the proposed control scheme has strong robustness against the system parameter variations and unstructured uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andersson S, Soderberg A, Bjorklund S (2005) Friction models for sliding fry, boundary and mixed lubricated contacts. Tribology 40:580–587

    Article  Google Scholar 

  • Ardjoun SE, Abid M, Aissaoui A, Naceri A (2011) A robust fuzzy sliding mode control applied to the double fed induction machine. Int J Circuits Syst Signal Process 5:315–321

    Google Scholar 

  • Bekakra Y, Ben Attous D (2014) Optimal tuning of PI controller using PSO optimization for indirect power control for DFIG based wind turbine with MPPT. Int J Syst Assur Eng Manag 5(3):219–229

    Article  Google Scholar 

  • Beltran B et al (2012a) Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Trans Energy Convers 27(2):261–269

    Article  Google Scholar 

  • Beltran B et al (2012b) Commande d’une éolienne à base de GADA par modes glissants d’ordre supérieur et observateur grand gain. Eur J Electr Eng 6:659–678

    Google Scholar 

  • Benkahla M, Taleb R, Boudjema Z (2016) Comparative study of robust control strategies for DFIG based wind turbine. Int J Adv Comput Sci Appl IJACSA 7(2):455–462

    Google Scholar 

  • Boukhezzar B, Siguerdidjane H (2011) Nonlinear control of variable-speed wind turbine using a two-mass model. IEEE Trans Energy Convers 26(1):149–162

    Article  Google Scholar 

  • Boulkroune A, Tadjine M, M’saad M, Farza M (2008) How to design a fuzzy adaptive control based on observers for uncertain affine nonlinear systems. Fuzzy Sets Syst 159:926–948

    Article  Google Scholar 

  • Boulkroune A, M’Saad M, Chekireb H (2010) Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction. Inf Sci 180:5041–5059

    Article  MathSciNet  Google Scholar 

  • Boulkroune A, Bounar N, MSaad M, Farza M (2014) Indirect adaptive fuzzy scheme based on observer for nonlinear systems: a novel SPR-filter approach. Neurocomputing 135:378–387

    Article  Google Scholar 

  • Bounadja E, Djahbar A, Boudjema Z (2014) Variable structure control of a doubly fed induction generator for wind energy conversion systems. Energy Procedia 50:999–1007

    Article  Google Scholar 

  • Bounar N, Boulkroune A, Boudjema F (2014) Adaptive fuzzy control of doubly-fed induction machine. J Control Eng Appl Inf 16(2):98–110

    Google Scholar 

  • Bounar N, Boulkroune A, Boudjema F (2015a) Fuzzy adaptive controller for a DFI-motor. In: Complex system modelling and control through intelligent soft computations studies in fuzziness and soft computing, vol 319, pp 87–110

  • Bounar N, Boulkroune A, Boudjema F, M’Saad M, Farza M (2015b) Adaptive fuzzy vector control for doubly-fed induction motor. Neurocomputing 151:756–769

    Article  Google Scholar 

  • Bounar N, Labdai S, Boulkroune A (2019) PSO–GSA based fuzzy sliding mode controller for DFIG-based wind turbine. ISA Trans 85:177–188

    Article  Google Scholar 

  • Chaoui H, Sicard P (2012) Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction. IEEE Trans Ind Electron 59(2):1123–1133

    Article  Google Scholar 

  • Chen SZ, Cheung NC, Wong KC, Wu J (2011) Integral variable structure direct torque control of doubly fed induction generator. EET Renew Power Gener 5(1):18–25

    Article  Google Scholar 

  • Evangelista CA, Valenciaga F, Puleston P (2012) Multivariable 2-sliding mode control for wind energy conversion system based on a doubly-fed induction generator. Int J Hydrog Energy 37:10070–10075

    Article  Google Scholar 

  • Fihakhir AM, Bouhamida M (2016) Nonlinear control of a doubly fed induction generator driven wind turbine. EEA 64(2):23–30

    Google Scholar 

  • Khalil H (2002) Nonlinear systems. Prentice Hall, London

    MATH  Google Scholar 

  • Kiruthiga B (2015) Implementation of first order sliding mode control of active and reactive power for DFIG based wind turbine. Int J Inf Futur Res 2(8):2487–2497

    Google Scholar 

  • Labdai S, Bounar N, Boulkroune A, Hemici B (2018) Sliding mode control via fuzzy multi-level switching control scheme for DFIG based WECS. Romanian J Inf Sci Technol 21(4):429–445

    Google Scholar 

  • Labdai S, Bounar N, Chrifi-Alaoui L, Boulkroune A, Hemici B, Nezli L (2019) Robust control based on backstepping and adaptive neural network for the DFIG based WECS. In: Proceedings of the third international conference on control, automation and diagnosis ICCAD 2019, Grenoble, France, pp 433–438

  • Lee CC (1990) Fuzzy logic in control system: fuzzy logic controller, part I and part II. IEEE Trans Control Syst Man Cybern 20:404–435

    Article  Google Scholar 

  • Mahboub MA, Drid S, Sid MA, Cheikh R (2017) Sliding mode control of grid connected brushless doubly fed induction generator driven by wind turbine in variable speed. Int J Syst Assur Eng Manag 8(3):788–798. https://doi.org/10.1007/s13198-016-0524-1

    Article  Google Scholar 

  • Mauricio JM, Leon AE, Gomez-Exposito A, Solsona JA (2008) An adaptive nonlinear controller for DFIM-based wind energy conversion systems. IEEE Trans Energy Convers 23(4):1025–1035

    Article  Google Scholar 

  • Mechter A, Kemih K, Ghanes M (2015) Sliding mode control of wind turbine with exponential reaching law. Acta Polytech Hung 12(3):167–183

    Google Scholar 

  • Moon JW, Gwon JS, Park JW, Kang DW, Kim JM (2011) Feedback linearization control of doubly fed induction generator under an unbalanced voltage. In: 8th international conference on power electronics—ECCE Asia, Korea

  • Okou FA, Akhrif O, Tarbouchi M (2010) Design of a nonlinear robust adaptive controller for a grid-connected doubly fed induction generator under wind turbine. In: 18th Mediterranean conference on control and automation, Marrakech, Morocco

  • Poitier F, Bouaouiche T, Machmoum M (2009) Advanced control of a doubly-fed induction generator for wind energy conversion. Electr Power Syst Res 79(7):1085–1096

    Article  Google Scholar 

  • Polycarpou MM, Ioannou PA (1996) A robust adaptive nonlinear control design. Automatica 32:423–427

    Article  MathSciNet  Google Scholar 

  • Wang LX (1994) Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs, London

    Google Scholar 

  • Yang B, Tiang L, Wang L et al (2016) Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine. Int J Electr Power Energy Syst 74:429–436

    Article  Google Scholar 

  • Zhao M, Yuan X, Hu J (2018) Modeling of DFIG wind turbine based on internal voltage motion equation in power systems phase-amplitude dynamics analysis. IEEE Trans Power Syst 33(2):1484–1495

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Algerian Ministry of Higher Education and Scientific Research and the General Direction of Scientific Research as a part of Project PRFU (No. A01L08UN180120180002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boulkroune.

Appendix

Appendix

1.1 Sliding Mode Control for DFIG-Based WT

A sliding mode control (SMC) law proposed for DFIG-based WT by Bekakra and Ben Attous (2014) and for Brushless DFIG-based WT by Mahboub et al. (2017) is summarized in this section.

$$ u_{\text{rd}} = u_{\text{rd}}^{\text{eq}} + u_{\text{rd}}^{n} $$
$$ u_{\text{rq}} = u_{\text{rq}}^{\text{eq}} + u_{\text{rq}}^{n} $$

where \( u_{\text{rd}}^{\text{eq}} = \left( {\frac{\text{d}}{{{\text{d}}t}}i_{\text{rd{-}ref}} + \frac{{R_{\text{r}} }}{{\sigma L_{\text{r}} }}i_{\text{rd}} - \left( {\omega_{\text{s}} - \omega } \right)i_{\text{rq}} } \right)\sigma \), \( u_{\text{rd}}^{n} = k_{\text{d}} {\text{sign}}\left( {e_{\text{d}} } \right) \)

$$ u_{\text{rq}}^{\text{eq}} = \left( {\frac{\text{d}}{{{\text{d}}t}}i_{\text{rq{-}ref}} + \frac{1}{\sigma }\left( {\frac{{R_{\text{r}} }}{{L_{\text{r}} }} + \frac{{R_{\text{s}} M^{2} }}{{L_{\text{s}}^{2} L_{\text{r}} }}} \right)i_{\text{rq}} + \left( {\omega_{\text{s}} - \omega } \right)i_{\text{rd}} } \right)\sigma,\quad u_{\text{rq}}^{n} = k_{\text{q}} {\text{sign}}\left( {e_{\text{q}} } \right) $$

with \( e_{\text{d}} = i_{\text{rd}} - i_{\text{rd{-}ref}} \) and \( e_{\text{q}} = i_{\text{rq}} - i_{\text{rq{-}ref}} \), \( k_{\text{d}} > 0 \), \( k_{\text{q}} > 0 \)

By setting the d-axis for the Park transformation aligned with stator flux axis. The stator active and reactive powers can be expressed as

$$ P_{\text{s}} = - \frac{{3u_{\text{s}} M}}{{2L_{\text{s}} }}i_{\text{rq}} , $$
$$ Q_{\text{s}} = \frac{{3 u_{\text{s}} }}{{2 L_{\text{s}} }}\left( {\frac{{u_{\text{s}} }}{{\omega_{\text{s}} }} - Mi_{\text{rd}} } \right) $$

Then

$$ i_{\text{rq{-}ref}} = - \frac{{L_{\text{s}} P_{\text{S{-}ref}} }}{{Mu_{\text{s}} }} $$

The stator active power reference is obtained from the MPPT bloc.By setting \( Q_{\text{s}} = 0 \), we have

$$ i_{\text{rd{-}ref}} = \frac{{u_{\text{s}} }}{{\omega_{\text{s}} M}} $$

Remark 5

To remove the chattering effect omnipresent in the conventional sliding mode control signals, the \( {\text{Sign}}\left( . \right) \) function will be replaced by an equivalent smooth function \( {\text{Tan}}h\left( . \right) \).

The block diagram of this SMC scheme is illustrated in Fig. 16.

Fig. 16
figure 16

The SMC scheme of the DFIM-based WT

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounar, N., Labdai, S., Boulkroune, A. et al. Adaptive Fuzzy Control Scheme for Variable-Speed Wind Turbines Based on a Doubly-Fed Induction Generator. Iran J Sci Technol Trans Electr Eng 44, 629–641 (2020). https://doi.org/10.1007/s40998-019-00276-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00276-6

Keywords

Navigation