Skip to main content
Log in

Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Low-thrust trajectories about planetary bodies characteristically span a high count of orbital revolutions. Directing the thrust vector over many revolutions presents a challenging optimization problem for any conventional strategy. This paper demonstrates the tractability of low-thrust trajectory optimization about planetary bodies by applying a Sundman transformation to change the independent variable of the spacecraft equations of motion to an orbit angle and performing the optimization with differential dynamic programming. Fuel-optimal geocentric transfers are computed with the transfer duration extended up to 2000 revolutions. The flexibility of the approach to higher fidelity dynamics is shown with Earth’s J2 perturbation and lunar gravity included for a 500 revolution transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Edelbaum, T.: Propulsion requirements for controllable satellites. ARS J. 31, 1079–1089 (1961)

    Article  Google Scholar 

  2. Edelbaum, T.: Theory of maxima and minima. In: Optimization Techniques, with Applications to Aerospace Systems (1962)

  3. Wiesel, W.E., Alfano, S.: Optimal many-revolution orbit transfer. J. Guid. Control. Dyn. 8, 155–157 (1985)

    Article  Google Scholar 

  4. Edelbaum, T.N.: Optimum low-thrust rendezvous and station keeping. AIAA J. 2(7), 1196–1201 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kéchichian, J.A.: Optimal low-thrust rendezvous using equinoctial orbit elements. Acta Astronaut. 38(1), 1–14 (1996)

    Article  Google Scholar 

  6. Kéchichian, J.A.: Optimal low-thrust transfer in general circular orbit using analytic averaging of the system dynamics. J. Astronaut. Sci. 57, 369–392 (2009)

    Article  Google Scholar 

  7. Kéchichian, J.A.: Inclusion of higher order harmonics in the modeling of optimal low-thrust orbit transfer. J. Astronaut. Sci. 56, 41–70 (2008)

    Article  Google Scholar 

  8. Petropoulos, A.E.: Simple control laws for low-thrust orbit transfers. In: AAS/AIAA Astrodynamics Specialist Conference (2003)

  9. Petropoulos, A.E.: Low-thrust orbit transfers using candidate Lyapunov functions with a mechanism for coasting. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2004)

  10. Kluever, C.A.: Simple guidance scheme for low-thrust orbit transfers. J. Guid. Control. Dyn. 21, 1015–1017 (1998)

    Article  Google Scholar 

  11. Chang, D.E., Chichka, D.F., Marsden, J.E.: Lyapunov-based transfer between elliptic Keplerian orbits. Discrete Contin. Dyn. Syst.-Ser. B 2, 57–67 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Betts, J.T.: Practical methods for optimal control and estimation using nonlinear programming. Society for Industrial and Applied Mathematics (2010)

  13. Betts, J.T.: Trajectory optimization using sparse sequential quadratic programming. In: R. Bulirsch, A. Miele, J. Stoer, K. Well (eds.) Optimal control, International Series of Numerical Mathematics, vol. 117. Birkhäuser Basel, Cambridge (1993)

  14. Betts, J.T.: Sparse optimization suite, SOS, User’s guide, release 2015.11. http://www.appliedmathematicalanalysis.com/downloads/sosdoc.pdf. [Online; accessed November-2016]

  15. Betts, J.T.: Very low-thrust trajectory optimization using a direct SQP method. J. Comput. Appl. Math. 120, 27–40 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Betts, J.T., Erb, S.O.: Optimal low thrust trajectories to the moon. SIAM J. Appl. Dyn. Syst. 2, 144–170 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Betts, J.T.: Optimal low thrust orbit transfers with eclipsing. Optim. Control Appl. Methods 36, 218–240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. N. T. T. Program: Mystic low-thrust trajectory design and visualization software. https://software.nasa.gov/software/NPO-43666-1. [Online; accessed October-2016]

  19. Rayman, M.D., Fraschetti, T.C., Raymond, C.A., Russell, C.T.: Dawn: a mission in development for exploration of main belt asteroids Vesta and Ceres. Acta Astronaut. 58, 605–616 (2006)

    Article  Google Scholar 

  20. Whiffen, G.J.: Static/dynamic control for optimizing a useful objective. No. Patent 6496741 (2002)

  21. Jacobson, D.H., Mayne, D.Q.: Differential Dynamic Programming. American Elsevier Publishing Company, Inc., New York (1970)

    MATH  Google Scholar 

  22. Whiffen, G.J.: Mystic: implementation of the static dynamic optimal control algorithm for high-fidelity, low-thrust trajectory design. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit (2006)

  23. Lantoine, G., Russell, R.P.: A hybrid differential dynamic programming algorithm for constrained optimal control problems. Part 1: theory. J. Optim. Theory Appl. 154(2), 382–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lantoine, G., Russell, R.P.: A hybrid differential dynamic programming algorithm for constrained optimal control problems. Part 2: application. J. Optim. Theory Appl. 154(2), 418–442 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lantoine, G., Russell, R.P.: A methodology for robust optimization of low-thrust trajectories in multi-body environments. Ph.D. Thesis (2010)

  26. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  27. Sundman, K.: Memoire sur le probleme des trois corps. Acta Math. 36, 105–179 (1913). https://doi.org/10.1007/BF02422379

    Article  MathSciNet  MATH  Google Scholar 

  28. Janin, G., Bond, V. R.: The elliptic anomaly. In: NASA Technicai Memorandum 58228 (1980)

  29. Berry, M., Healy, L.: The generalized Sundman transformation for propagation of high-eccentricity elliptical orbits. In: AAS/AIAA Space Flight Mechanics Meeting (2002)

  30. Pellegrini, E., Russell, R.P., Vittaldev, V.: F and G Taylor series solutions to the Stark and Kepler problems with Sundman transformations. Celest. Mech. Dyn. Astron. 118, 355–378 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yam, C.H., Lorenzo, D.D., Izzo, D.: Towards a high fidelity direct transcription method for optimisation of low-thrust trajectories. In: International Conference on Astrodynamics Tools and Techniques - ICATT (2010)

  32. Sims, J.A., Flanagan, S.N.: Preliminary design of low-thrust interplanetary missions. In: AAS/AIAA Astrodynamics Specialist Conference (1999)

  33. Aziz, J.D., Parker, J.S., Englander, J.A.: Hybrid differential dynamic programming with stochastic search. In: AAS/AIAA Space Flight Mechanics Meeting (2016)

  34. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. In: MPS/SIAM (2000)

  35. Prince, P., Dormand, J.: High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 7(1), 67–75 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  36. Anderson, J., Burns, P.J., Milroy, D., Ruprecht, P., Hauser, T., Siegel, H.J.: Deploying RMACC summit: an HPC resource for the Rocky Mountain Region. In: PEARC17, July 09–13 2017. https://doi.org/10.1145/3093338.3093379

  37. O. A. R. Board: OpenMP Application Program Interface Version 3.0 (2008)

  38. Petropoulos, A.E., Tarzi, Z.B., Lantoine, G., Dargent, T., Epenoy, R.: Techniques for designing many-revolution, electric propulsion trajectories. In: Advances in the Astronautical Sciences, vol. 152 (2014)

Download references

Acknowledgments

This work was supported by a NASA Space Technology Research Fellowship. This work utilized the RMACC Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University. The Summit supercomputer is a joint effort of the University of Colorado Boulder and Colorado State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, J.D., Parker, J.S., Scheeres, D.J. et al. Low-Thrust Many-Revolution Trajectory Optimization via Differential Dynamic Programming and a Sundman Transformation. J of Astronaut Sci 65, 205–228 (2018). https://doi.org/10.1007/s40295-017-0122-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-017-0122-8

Keywords

Navigation