Skip to main content
Log in

Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Cancer is a leading global cause of mortality, which underscores the imperative of early detection for improved patient outcomes. Biorecognition molecules, especially aptamers, have emerged as highly effective tools for early and accurate cancer cell identification. Aptamers, with superior versatility in synthesis and modification, offer enhanced binding specificity and stability compared with conventional antibodies. Hence, this article reviews diagnostic strategies employing aptamer-based biohybrid nano-biosensing technologies, focusing on their utility in detecting cancer biomarkers and abnormal cells. Recent developments include the synthesis of nano-aptamers using diverse nanomaterials, such as metallic nanoparticles, metal oxide nanoparticles, carbon-derived substances, and biohybrid nanostructures. The integration of these nanomaterials with aptamers significantly enhances sensitivity and specificity, promising innovative and efficient approaches for cancer diagnosis. This convergence of nanotechnology with aptamer research holds the potential to revolutionize cancer treatment through rapid, accurate, and non-invasive diagnostic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Kohlberger et al. (2022) [35], ©International Union of Biochemistry and Molecular Biology, 2024

Fig. 3

Reproduced with permission from Liu et al. (2023) [62], ©Elsevier, 2023

Fig. 4

Reproduced with permission from Chen et al. (2023) [72], © Elsevier, 2023

Fig. 5

Reproduced with permission from Borghei et al. (2016) [132], ©Elsevier, 2016

Fig. 6

Reproduced with permission from Park and Ban (2023) [136], ©Springer Nature, 2023

Fig. 7

Reproduced with permission from Jiang et al. (2018) [144], ©Elsevier, 2018

Fig. 8

Reproduced with permission from Sun et al. (2017) [149], ©Springer, 2017

Fig. 9

Reproduced with permission from Yang et al. (2014) [155], ©Elsevier, 2014

Fig. 10

Reproduced with permission from Zhang et al. (2011) [162], ©Elsevier, 2011

Fig. 11

Reproduced with permission from Zhang et al. (2023) [165], ©Elsevier, 2023

Fig. 12

Reproduced with permission from Hao et al. (2019) [174], ©Springer, 2019

Fig. 13

Reproduced with permission from Wang et al. (2020) [180], ©Elsevier, 2020

Similar content being viewed by others

References

  1. Jeevanandam J, Sabbih G, Tan KX, Danquah MK. Oncological ligand-target binding systems and developmental approaches for cancer theranostics. Mol Biotechnol. 2021;63:167–83.

    Article  CAS  PubMed  Google Scholar 

  2. Kavitha R, Jothi DK, Saravanan K, Swain MP, Gonzáles JLA, Bhardwaj RJ, et al. Colony optimization-enabled CNN deep learning technique for accurate detection of cervical cancer. Biomed Res Int. 2023;2023:1742891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sudhakar A. History of cancer, ancient and modern treatment methods. J Cancer Sci Ther. 2009;1:1–4.

    Article  PubMed  Google Scholar 

  4. Blackley D, Behringer B, Zheng S. Cancer mortality rates in Appalachia: descriptive epidemiology and an approach to explaining differences in outcomes. J Commun Health. 2012;37:804–13.

    Article  Google Scholar 

  5. Alberini A, Rheinberger CM, Ščasný M. All cancers are not created equal: how do survival prospects affect the willingness to pay to avoid cancer? J Benefit Cost Anal. 2023;14(1):93–113.

    Article  Google Scholar 

  6. Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci. 2006;7:797–809.

    Article  CAS  PubMed  Google Scholar 

  7. Baghdadli A, Arcuri GG, Green CG, Gauthier LR, Gagnon P, Gagnon B. The fast cognitive evaluation (FaCE): a screening tool to detect cognitive impairment in patients with cancer. BMC Cancer. 2023;23:1–12.

    Article  Google Scholar 

  8. Ren B, Liu X, Suriawinata AA. Pancreatic ductal adenocarcinoma and its precursor lesions: histopathology, cytopathology, and molecular pathology. Am J Pathol. 2019;189:9–21.

    Article  PubMed  Google Scholar 

  9. He L, Long LR, Antani S, Thoma GR. Histology image analysis for carcinoma detection and grading. Comput Methods Programs Biomed. 2012;107:538–56.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Varghese J, Saleema JS. Machine learning techniques for automated nuclear atypia detection in histopathology images: a review. In: Inventive computation and information technologies. Proceedings of ICICIT 2022; 2023. p. 717–40.

  11. Rastogi A. Changing role of histopathology in the diagnosis and management of hepatocellular carcinoma. World J Gastroenterol. 2018;24:4000–13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim T, Rao J. “SMART” cytology: the next generation cytology for precision diagnosis. Amsterdam: Elsevier; 2023.

    Google Scholar 

  13. Morrison WB, DeNicola DB. Advantages and disadvantages of cytology and histopathology for the diagnosis of cancer. Semin Vet Med Surg. 1993;8:222–7.

    CAS  Google Scholar 

  14. Siddiqui EA, Chaurasia V, Shandilya M. Detection and classification of lung cancer computed tomography images using a novel improved deep belief network with Gabor filters. Chemom Intell Lab Syst. 2023;235:104763.

    Article  CAS  Google Scholar 

  15. Kuhl CK. Abbreviated magnetic resonance imaging (MRI) for breast cancer screening: rationale, concept, and transfer to clinical practice. Annu Rev Med. 2019;70:501–19.

    Article  CAS  PubMed  Google Scholar 

  16. Veenhuizen SGA, de Lange SV, Bakker MF, Pijnappel RM, Mann RM, Monninkhof EM, et al. Supplemental breast MRI for women with extremely dense breasts: results of the second screening round of the DENSE trial. Radiology. 2021;299:278–86.

    Article  PubMed  Google Scholar 

  17. Hwang EJ, Nam JG, Lim WH, Park SJ, Jeong YS, Kang JH, et al. Deep learning for chest radiograph diagnosis in the emergency department. Radiology. 2019;293:573–80.

    Article  PubMed  Google Scholar 

  18. Zebari DA, Ibrahim DA, Zeebaree DQ, Haron H, Salih MS, Damaševičius R, et al. Systematic review of computing approaches for breast cancer detection based computer aided diagnosis using mammogram images. Appl Artif Intell. 2021;35:2157–203.

    Article  Google Scholar 

  19. Ge J, Zhang Q, Zeng J, Gu Z, Gao M. Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials. 2020;228: 119553.

    Article  CAS  PubMed  Google Scholar 

  20. Ayana G, Park J, Jeong J-W, Choe S-W. A novel multistage transfer learning for ultrasound breast cancer image classification. Diagnostics. 2022;12:135.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sivasubramanian M, Hsia Y, Lo L-W. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer. Front Mol Biosci. 2014;1:15.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu J, Hu S, Zhang L, Xin J, Sun C, Wang L, et al. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics. 2020;10:4544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cengiz Ozalp V, Kavruk M, Dilek O, Tahir BA. Aptamers: molecular tools for medical diagnosis. Curr Top Med Chem. 2015;15:1125–37.

    Article  Google Scholar 

  24. Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B, et al. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules. 2019;25:3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ștefan G, Hosu O, De Wael K, Lobo-Castañón MJ, Cristea C. Aptamers in biomedicine: selection strategies and recent advances. Electrochim Acta. 2021;376: 137994.

    Article  Google Scholar 

  26. Cheng X, Xia X, Ren D, Chen Q, Xu G, Wei F, et al. Programmable CRISPR-Cas12a and self-recruiting crRNA assisted dual biosensing platform for simultaneous detection of lung cancer biomarkers hOGG1 and FEN1. Anal Chim Acta. 2023;1240: 340748.

    Article  CAS  PubMed  Google Scholar 

  27. Stephens M. The emerging potential of aptamers as therapeutic agents in infection and inflammation. Pharmacol Ther. 2022;238: 108173.

    Article  CAS  PubMed  Google Scholar 

  28. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnol. 2022;20:262.

    Article  Google Scholar 

  29. Khan S, Hossain MK. Classification and properties of nanoparticles. In: Rangappa SM, Parameswaranpillai J, Yashas Gowda TG, Siengchin S, Ozgur Seydibeyoglu M, editors. Nanoparticle-based polymer composites. Amsterdam: Elsevier; 2022. p. 15–54.

  30. Kurup CP, Lim SA, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry. 2022;147: 108170.

    Article  Google Scholar 

  31. Thevendran R, Citartan M. Assays to estimate the binding affinity of aptamers. Talanta. 2022;238: 122971.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Z, Huang Q, Yan Y, Yao J, Zhong F, Xie S, Zhang M, Zhang H, Jin M, Shui L. A multi-unit integrated electrochemical biosensor array for synergistic signal enhancing carbohydrate antigen 125 detection. Sens Actuators B. 2023;393: 134224.

    Article  CAS  Google Scholar 

  33. Khazaei M, Hosseini MS, Haghighi AM, Misaghi M. Nanosensors and their applications in early diagnosis of cancer. Sens Bio-Sens Res. 2023;41:100569.

    Article  Google Scholar 

  34. McKeague M, DeRosa MC. Challenges and opportunities for small molecule aptamer development. J Nucleic Acids. 2012;2012:1–20.

    Article  Google Scholar 

  35. Kohlberger M, Gadermaier G. SELEX: critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem. 2022;69:1771–92.

    Article  CAS  PubMed  Google Scholar 

  36. Pundir M, De Rosa MC, Lobanova L, Abdulmawjood S, Chen X, Papagerakis S, et al. Structural properties and binding mechanism of DNA aptamers sensing saliva melatonin for diagnosis and monitoring of circadian clock and sleep disorders. Anal Chim Acta. 2023;1251: 340971.

    Article  CAS  PubMed  Google Scholar 

  37. Joseph DF, Nakamoto JA, Garcia Ruiz OA, Peñaranda K, Sanchez-Castro AE, Castillo PS, et al. DNA aptamers for the recognition of HMGB1 from Plasmodium falciparum. PLoS ONE. 2019;14: e0211756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kushwaha A, Takamura Y, Nishigaki K, Biyani M. Competitive non-SELEX for the selective and rapid enrichment of DNA aptamers and its use in electrochemical aptasensor. Sci Rep. 2019;9:1–11.

    Article  CAS  Google Scholar 

  39. Stoltenburg R, Nikolaus N, Strehlitz B. Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem. 2012;2012:415697.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Zhang L, Sun H, Xu S, Li K, Su X. Screening and application of inhibitory aptamers for DNA repair protein apurinic/apyrimidinic endonuclease 1. Int J Biol Macromol. 2023;242: 124918.

    Article  CAS  PubMed  Google Scholar 

  41. Yin S, Li Y, Hossain MN, Sun C, Kraatz H-B. Electrochemical detection of 25-hydroxyvitamin D3 using an oligonucleotide aptasensor. Sens Actuators B. 2021;340: 129945.

    Article  CAS  Google Scholar 

  42. Mann D, Reinemann C, Stoltenburg R, Strehlitz B. In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun. 2005;338:1928–34.

    Article  CAS  PubMed  Google Scholar 

  43. Zhu Q, Liu G, Kai M. DNA aptamers in the diagnosis and treatment of human diseases. Molecules. 2015;20:20979–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lakhin A, Tarantul V, Gening L. Aptamers: problems, solutions and prospects. Acta Nat. 2013;5:34–43.

    Article  CAS  Google Scholar 

  45. Shien Yeoh T, Yusof Hazrina H, Bukari BA, Tang T-H, Citartan M. Generation of an RNA aptamer against LipL32 of Leptospira isolated by tripartite-hybrid SELEX coupled with in-house Python-aided unbiased data sorting. Bioorg Med Chem. 2023;81: 117186.

    Article  CAS  PubMed  Google Scholar 

  46. Ospina-Villa JD, Dufour A, Weber C, Ramirez-Moreno E, Zamorano-Carrillo A, Guillen N, et al. Targeting the polyadenylation factor EhCFIm25 with RNA aptamers controls survival in Entamoeba histolytica. Sci Rep. 2018;8:1–11.

    Article  CAS  Google Scholar 

  47. Sakyi SA, Aboagye SY, Otchere ID, Liao AM, Caltagirone TG, Yeboah-Manu D. RNA aptamer that specifically binds to mycolactone and serves as a diagnostic tool for diagnosis of Buruli ulcer. PLoS Negl Trop Dis. 2016;10: e0004950.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, et al. RNA aptamers specifically interact with the prion protein PrP. J Virol. 1997;71:8790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. Int J Biochem Mol Biol. 2013;4:27.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rozenblum GT, Lopez VG, Vitullo AD, Radrizzani M. Aptamers: current challenges and future prospects. Expert Opin Drug Discov. 2016;11:127–35.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16:181–202.

    Article  CAS  PubMed  Google Scholar 

  52. Chen S, Cao Z, Prettner K, Kuhn M, Yang J, Jiao L, et al. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncol. 2023;9:465–72.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liang H, Zhou X, Zhu Y, Li D, Jing D, Su X, et al. Association of outdoor air pollution, lifestyle, genetic factors with the risk of lung cancer: a prospective cohort study. Environ Res. 2023;218: 114996.

    Article  CAS  PubMed  Google Scholar 

  54. Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci. 2013;48:259–71.

    Article  CAS  PubMed  Google Scholar 

  55. Lawler M, Davies L, Oberst S, Oliver K, Eggermont A, Schmutz A, et al. European groundshot: addressing Europe’s cancer research challenges: a Lancet Oncology Commission. Lancet Oncol. 2023;24:e11-56.

    Article  PubMed  Google Scholar 

  56. Takita S, Nabok A, Lishchuk A, Mussa MH, Smith D. Enhanced performance electrochemical biosensor for detection of prostate cancer biomarker PCA3 using specific aptamer. Eng. 2023;4:367–79.

    Article  Google Scholar 

  57. Chinnappan R, Ramadan Q, Zourob M. An integrated lab-on-a-chip platform for pre-concentration and detection of colorectal cancer exosomes using anti-CD63 aptamer as a recognition element. Biosens Bioelectron. 2023;220: 114856.

    Article  CAS  PubMed  Google Scholar 

  58. Sun D, Ma Y, Wu M, Chen Z, Zhang L, Lu J. Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles. J Pharm Anal. 2023;13:340–54.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu Z, Parveen N, Rehman U, Aziz A, Sheikh A, Abourehab MAS, et al. Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Mol Cancer. 2023;22:1–22.

    Article  Google Scholar 

  60. Bapat RS, Bhattad R, Dhabadgav R. Awareness, knowledge and practice of self-breast examination in young women. Indian J Gynecol Oncol. 2023;21:4.

    Article  Google Scholar 

  61. Tan W, Zhao Z, Zhang L. Aptamer properties, functions, and applications. In: Zhang L, Tang X, Xi Z, Chattopadhyaya J, editors. Nucleic acids in medicinal chemistry and chemical biology: drug development and clinical applications. US: Wiley; 2023. p. 443–82.

  62. Liu W, Wang Y, Zhang Y, Yu T, Ge J. Analysis of breast cancer biomarker HER2 based on single stranded DNA aptamer and enzyme signal amplification. Int J Electrochem Sci. 2023;18: 100056.

    Article  CAS  Google Scholar 

  63. Liu M, Yang T, Chen Z, Wang Z, He N. Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells. Biomater Sci. 2018;6:3152–9.

    Article  CAS  PubMed  Google Scholar 

  64. Li W-M, Zhou L-L, Zheng M, Fang J. Selection of metastatic breast cancer cell-specific aptamers for the capture of CTCs with a metastatic phenotype by cell-SELEX. Mol Ther Nucleic Acids. 2018;12:707–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Drake BF, Khan S, Wang M, Hicks V, Nichols K, Taylor M, et al. Definitive treatment and risk of death among men diagnosed with metastatic prostate cancer at the Veterans Health Administration. Ann Epidemiol. 2023;79:24–31.

    Article  PubMed  Google Scholar 

  66. Jolly P, Formisano N, Estrela P. DNA aptamer-based detection of prostate cancer. Chem Pap. 2015;69:77–89.

    Article  CAS  Google Scholar 

  67. Wang Y, Luo Y, Bing T, Chen Z, Lu M, Zhang N, et al. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer. PLoS ONE. 2014;9: e100243.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Duan M, Long Y, Yang C, Wu X, Sun Y, Li J, et al. Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging. Oncotarget. 2016;7:36436.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Campos-Fernández E, Barcelos LS, Souza AG, Goulart LR, Alonso-Goulart V. Post-SELEX optimization and characterization of a prostate cancer cell-specific aptamer for diagnosis. ACS Omega. 2020;5:3533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Huang Z-X, Xie Q, Guo Q-P, Wang K-M, Meng X-X, Yuan B-Y, et al. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues. Chin Chem Lett. 2017;28:1252–7.

    Article  CAS  Google Scholar 

  71. Lobb RJ, Visan KS, Wu L-Y, Norris EL, Hastie ML, Everitt S, et al. An epithelial-to-mesenchymal transition induced extracellular vesicle prognostic signature in non-small cell lung cancer. Commun Biol. 2023;6:68.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen J, Xu J, Xiang J, Wan T, Deng H, Li D. A multivalent activatable aptamer probe with ultralow background signal and high sensitivity for diagnosis of lung adenocarcinoma. Talanta. 2023;253: 124056.

    Article  CAS  Google Scholar 

  73. Petrella F, Rizzo S, Attili I, Passaro A, Zilli T, Martucci F, et al. an overview of treatment options. Curr Oncol. 2023;30:3160–75.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang H, Qin M, Liu R, Ding X, Chen ISY, Jiang Y. Characterization of a bifunctional synthetic RNA aptamer and a truncated form for ability to inhibit growth of non-small cell lung cancer. Sci Rep. 2019;9:1–12.

    Google Scholar 

  75. Zhao Z, Xu L, Shi X, Tan W, Fang X, Shangguan D. Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst. 2009;134:1808–14.

    Article  CAS  PubMed  Google Scholar 

  76. Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 2023;72:338–44.

    Article  PubMed  Google Scholar 

  77. Nuzzo S, Roscigno G, Affinito A, Ingenito F, Quintavalle C, Condorelli G. Potential and challenges of aptamers as specific carriers of therapeutic oligonucleotides for precision medicine in cancer. Cancers. 2019;11:1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. O’Reilly M, Linehan A, Krstic A, Kolch W, Sheahan K, Winter DC, et al. Oncotherapeutic strategies in early onset colorectal cancer. Cancers. 2023;15:552.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen C, Zhou S, Cai Y, Tang F. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precis Oncol. 2017;1:1–7.

    CAS  Google Scholar 

  80. Li W, Wu C-C, Wang S, Zhou L, Qiao L, Ba W, Liu F, Zhan L, Chen H, Yu J-S, Fang J. Identification of the target protein of the metastatic colorectal cancer-specific aptamer W3 as a biomarker by aptamer-based target cells sorting and functional characterization. Biosens Bioelectron. 2022;213: 114451.

    Article  CAS  PubMed  Google Scholar 

  81. Liu Q, Jin C, Wang Y, Fang X, Zhang X, Chen Z, et al. Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater. 2014;6: e95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hung L-Y, Wang C-H, Che Y-J, Fu C-Y, Chang H-Y, Wang K, Lee G-B. Screening of aptamers specific to colorectal cancer cells and stem cells by utilizing on-chip Cell-SELEX. Sci Rep. 2015;5:1–12.

    Article  Google Scholar 

  83. Özdemir Ç, Kar YD, Eroğlu N, Şen HS, Şenol Y, İbrahim E. The relationship of bone marrow fibrosis at diagnosis with prognosis and survival in childhood acute lymphoblastic leukemia. Eur J Res. 2023;9:375–83.

    Article  Google Scholar 

  84. Wang K, She Q, Li M, Zhao H, Zhao W, Chen B, et al. Prognostic significance of frailty status in patients with primary lung cancer. BMC Geriatr. 2023;23:1–9.

    Google Scholar 

  85. Yazdian-Robati R, Arab A, Ramezani M, Abnous K, Taghdisi SM. Application of aptamers in treatment and diagnosis of leukemia. Int J Pharm. 2017;529:44–54.

    Article  CAS  PubMed  Google Scholar 

  86. Rus I, Tertis M, Pop A, Fizeşan I, Bogdan D, Matei E, et al. The use of a new selective AB3 aptamer for the hematologic tumor cells’ detection. Sens Actuators B. 2023;394: 134389.

    Article  CAS  Google Scholar 

  87. Poturnayová A, Buríková M, Bízik J, Hianik T. DNA aptamers in the detection of leukemia cells by the thickness shear mode acoustics method. ChemPhysChem. 2019;20:545–54.

    Article  PubMed  Google Scholar 

  88. Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter CM, et al. Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol. 2014;7:1–14.

    Article  Google Scholar 

  89. Zeng Z, Parekh P, Li Z, Shi Z-Z, Tung C-H, Zu Y. Specific and sensitive tumor imaging using biostable oligonucleotide aptamer probes. Theranostics. 2014;4:945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yang C, Wang Y, Ge MH, Fu YJ, Hao R, Islam K, et al. Rapid identification of specific DNA aptamers precisely targeting CD33 positive leukemia cells through a paired cell-based approach. Biomater Sci. 2019;7:938–50.

    Article  CAS  PubMed  Google Scholar 

  91. Yu Y, Duan S, He J, Liang W, Su J, Zhu J, et al. Highly sensitive detection of leukemia cells based on aptamer and quantum dots. Oncol Rep. 2016;36:886–92.

    Article  CAS  PubMed  Google Scholar 

  92. Cabibbo G, Celsa C, Calvaruso V, Petta S, Cacciola I, Cannavò MR, et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J Hepatol. 2019;71:265–73.

    Article  CAS  PubMed  Google Scholar 

  93. Wu X, Chen J, Wu M, Zhao JX. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics. 2015;5:322.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer. 2023;22:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goh KW, Stephen A, Wu YS, Sim MS, Batumalaie K, Gopinath SC, et al. Molecular targets of aptamers in gastrointestinal cancers: cancer detection, therapeutic applications, and associated mechanisms. J Cancer. 2023;14:2491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li X, Zhang P, Dou L, Wang Y, Sun K, Zhang X, et al. Detection of circulating tumor cells in breast cancer patients by nanopore sensing with aptamer-mediated amplification. ACS Sens. 2020;5:2359–66.

    Article  CAS  PubMed  Google Scholar 

  97. Zahra Q, Khan QA, Luo Z. Advances in optical aptasensors for early detection and diagnosis of various cancer types. Front Oncol. 2021;11:632165.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kivrak E, Ince-Yardimci A, Ilhan R, Kirmizibayrak PB, Yilmaz S, Kara P. Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal Bioanal Chem. 2020;412:7851–60.

    Article  CAS  PubMed  Google Scholar 

  99. Li L, Wan J, Wen X, Guo Q, Jiang H, Wang J, et al. Identification of a new DNA aptamer by tissue-SELEX for cancer recognition and imaging. Anal Chem. 2021;93:7369–77.

    Article  CAS  PubMed  Google Scholar 

  100. Pu A, Raj G, John J, Mohan M, John F, George J. Aptamers: features, synthesis and applications. Chem Biodivers. 2023;20: e202301008.

    Article  CAS  Google Scholar 

  101. Cerchia L, De Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 2010;28:517–25.

    Article  CAS  PubMed  Google Scholar 

  102. Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, et al. The application of aptamer in biomarker discovery. Biomark Res. 2023;11:70.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ruiz Ciancio D, Vargas MR, Thiel WH, Bruno MA, Giangrande PH, Mestre MB. Aptamers as diagnostic tools in cancer. Pharmaceuticals. 2018;11:86.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chiang S-C, Han C-L, Yu K-H, Chen Y-J, Wu K-P. Prioritization of cancer marker candidates based on the immunohistochemistry staining images deposited in the human protein atlas. PLoS ONE. 2013;8: e81079.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jiang L, Lin X, Chen F, Qin X, Yan Y, Ren L, et al. Current research status of tumor cell biomarker detection. Microsyst Nanoeng. 2023;9:123.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Barough MS, Jalili N, Shafiee S, Salehi M, Naseri N, Javidi MA, et al. Anti-MUC1 nanobody can synergize the Tamoxifen and Herceptin effects on breast cancer cells by inducing ER, PR and HER2 overexpression. Int Immunopharmacol. 2023;124: 110792.

    Article  Google Scholar 

  107. Sola M, Menon AP, Moreno B, Meraviglia-Crivelli D, Soldevilla MM, Cartón-García F, et al. Aptamers against live targets: is in vivo SELEX finally coming to the edge? Mol Ther Nucleic Acids. 2020;21:192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan AC, Levy M. Aptamer-mediated delivery and cell-targeting aptamers: room for improvement. Nucleic Acid Ther. 2018;28:194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. DeRosa MC, Lin A, Mallikaratchy P, McConnell EM, McKeague M, Patel R, et al. In vitro selection of aptamers and their applications. Nat Rev Methods Primers. 2023;3:54.

    Article  CAS  Google Scholar 

  110. Schüling T, Eilers A, Scheper T, Walter J. Aptamer-based lateral flow assays. AIMS Bioeng. 2018;5:78–102.

    Article  Google Scholar 

  111. Kovacevic KD, Gilbert JC, Jilma B. Pharmacokinetics, pharmacodynamics and safety of aptamers. Adv Drug Deliv Rev. 2018;134:36–50.

    Article  CAS  PubMed  Google Scholar 

  112. Shweta, Sood S, Sharma A, Chadha S, Guleria V. Nanotechnology: a cutting-edge technology in vegetable production. J Hortic Sci Biotechnol. 2021;96:682–95.

    Article  CAS  Google Scholar 

  113. Baig N. Two-dimensional nanomaterials: a critical review of recent progress, properties, applications, and future directions. Composites A. 2022;165:107362.

    Article  Google Scholar 

  114. Kumar Kulabhusan P, Hussain B, Yüce M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics. 2020;12:646.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bousiakou L, Al-Dosary O, Economou A, Subjakova V, Hianik T. Current trends in the use of semiconducting materials for electrochemical aptasensing. Chemosensors. 2023;11:438.

    Article  CAS  Google Scholar 

  116. Jo H, Ban C. Aptamer-nanoparticle complexes as powerful diagnostic and therapeutic tools. Exp Mol Med. 2016;48:e230–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang Y, Zhou N. Electrochemical biosensors based on micro-fabricated devices for point-of-care testing: a review. Electroanalysis. 2022;34:168–83.

    Article  CAS  Google Scholar 

  118. Police Patil AV, Chuang Y-S, Li C, Wu C-C. Recent advances in electrochemical immunosensors with nanomaterial assistance for signal amplification. Biosensors. 2023;13:125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Reinemann C, Strehlitz B. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment. Swiss Med Wkly. 2014;144: w13908.

    PubMed  Google Scholar 

  120. Huang Z, Qiu L, Zhang T, Tan W. Integrating DNA nanotechnology with aptamers for biological and biomedical applications. Matter. 2021;4:461–89.

    Article  CAS  Google Scholar 

  121. Choi Y-E, Kwak J-W, Park JW. Nanotechnology for early cancer detection. Sensors. 2010;10:428–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Aslan Y, Atabay M, Chowdhury HK, Göktürk I, Saylan Y, Inci F. Aptamer-based point-of-care devices: emerging technologies and integration of computational methods. Biosensors. 2023;13:569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fu Z, Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int J Mol Sci. 2020;21:9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Loiseau A, Zhang L, Hu D, Salmain M, Mazouzi Y, Flack R, et al. Core–shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing. ACS Appl Mater Interfaces. 2019;11:46462–71.

    Article  CAS  PubMed  Google Scholar 

  125. Catanzaro L, Scardaci V, Scuderi M, Condorelli M, D’Urso L, Compagnini G. Surface plasmon resonance of gold nanoparticle aggregates induced by halide ions. Mater Chem Phys. 2023;308: 128245.

    Article  CAS  Google Scholar 

  126. Weremfo A, Fong STC, Khan A, Hibbert DB, Zhao C. Electrochemically roughened nanoporous platinum electrodes for non-enzymatic glucose sensors. Electrochim Acta. 2017;231:20–6.

    Article  CAS  Google Scholar 

  127. Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J Funct Biomater. 2023;14:244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruiz-Fresneda MA, Schaefer S, Hübner R, Fahmy K, Merroun ML. Exploring antibacterial activity and bacterial-mediated allotropic transition of differentially coated selenium nanoparticles. ACS Appl Mater Interfaces. 2023;15:29958–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fu Y, Ganeev RA, Krishnendu P, Zhou C, Rao KS, Guo C. Size-dependent off-resonant nonlinear optical properties of gold nanoparticles and demonstration of efficient optical limiting. Opt Mater Express. 2019;9:976–91.

    Article  CAS  Google Scholar 

  130. Chun L, Kim S-E, Cho M, Choe W-S, Nam J, Lee DW, et al. Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sens Actuators B. 2013;186:446–50.

    Article  CAS  Google Scholar 

  131. Zhu Y, Chandra P, Shim Y-B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem. 2013;85:1058–64.

    Article  CAS  PubMed  Google Scholar 

  132. Borghei Y-S, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta. 2016;904:92–7.

    Article  CAS  PubMed  Google Scholar 

  133. Li C-H, Kuo T-R, Su H-J, Lai W-Y, Yang P-C, Chen J-S, et al. Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep. 2015;5:1–11.

    Google Scholar 

  134. Yaiwong P, Anuthum S, Sangthong P, Jakmunee J, Bamrungsap S, Ounnunkad K. A new portable toluidine blue/aptamer complex-on-polyethyleneimine-coated gold nanoparticles-based sensor for label-free electrochemical detection of alpha-fetoprotein. Front Bioeng Biotechnol. 2023;11:1182880.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chen LQ, Xiao SJ, Peng L, Wu T, Ling J, Li YF, et al. Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J Phys Chem B. 2010;114:3655–9.

    Article  CAS  PubMed  Google Scholar 

  136. Park J, Ban C. Development of a one-shot dual aptamer-based fluorescence nanosensor for rapid, sensitive, and label-free detection of periostin. Sci Rep. 2023;13:10224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou L, Wang W, Chen Y, Fan J, Tong C, Liu B. Aptamer-tagged silver nanoclusters for cell image and Mucin1 detection in vitro. Talanta. 2019;205: 120075.

    Article  CAS  PubMed  Google Scholar 

  138. Yin J, He X, Wang K, Xu F, Shangguan J, He D, et al. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization. Anal Chem. 2013;85:12011–9.

    Article  CAS  PubMed  Google Scholar 

  139. Shan W, Pan Y, Fang H, Guo M, Nie Z, Huang Y, et al. An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label. Talanta. 2014;126:130–5.

    Article  CAS  PubMed  Google Scholar 

  140. Idris AO, Akanji SP, Orimolade BO, Olorundare FOG, Azizi S, Mamba B, et al. Using nanomaterials as excellent immobilisation layer for biosensor design. Biosensors. 2023;13:192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kalambate P, Thirabowonkitphithan P, Kaewarsa P, Permpoka K, Radwan A, Shakoor R, et al. Progress, challenges, and opportunities of two-dimensional layered materials based electrochemical sensors and biosensors. Mater Today Chem. 2022;26: 101235.

    Article  CAS  Google Scholar 

  142. Gao P, Wei R, Chen Y, Li X, Pan W, Li N, et al. Pt nanozyme-bridged covalent organic framework-aptamer nanoplatform for tumor targeted self-strengthening photocatalytic therapy. Biomaterials. 2023;297: 122109.

    Article  CAS  PubMed  Google Scholar 

  143. Bharti A, Rana S, Dahiya D, Agnihotri N, Prabhakar N. An electrochemical aptasensor for analysis of MUC1 using gold platinum bimetallic nanoparticles deposited carboxylated graphene oxide. Anal Chim Acta. 2020;1097:186–95.

    Article  CAS  PubMed  Google Scholar 

  144. Jiang Y, Sun D, Liang Z, Chen L, Zhang Y, Chen Z. Label-free and competitive aptamer cytosensor based on layer-by-layer assembly of DNA-platinum nanoparticles for ultrasensitive determination of tumor cells. Sens Actuators B. 2018;262:35–43.

    Article  CAS  Google Scholar 

  145. Fu L, Zheng Y, Li X, Liu X, Lin C-T, Karimi-Maleh H. Strategies and applications of graphene and its derivatives-based electrochemical sensors in cancer diagnosis. Molecules. 2023;28:6719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. MubarakAli D, Kim H, Venkatesh PS, Kim J-W, Lee S-Y. A systemic review on the synthesis, characterization, and applications of palladium nanoparticles in biomedicine. Appl Biochem Biotechnol. 2023;195:3699–718.

    Article  CAS  PubMed  Google Scholar 

  147. Bi L, Teng Y, Baghayeri M, Bao J. Employing Pd nanoparticles decorated on halloysite nanotube/carbon composite for electrochemical aptasensing of HER2 in breast cancer patients. Environ Res. 2023;237: 117030.

    Article  CAS  PubMed  Google Scholar 

  148. Tabrizi MA, Shamsipur M, Saber R, Sarkar S. Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using mwcnts-pdnano/ptca/aptamer as labeled aptamer for the signal amplification. Anal Chim Acta. 2017;985:61–8.

    Article  Google Scholar 

  149. Sun D, Lu J, Wang X, Zhang Y, Chen Z. Voltammetric aptamer based detection of HepG2 tumor cells by using an indium tin oxide electrode array and multifunctional nanoprobes. Microchim Acta. 2017;184:3487–96.

    Article  CAS  Google Scholar 

  150. Ou D, Sun D, Lin X, Liang Z, Zhong Y, Chen Z. A dual-aptamer-based biosensor for specific detection of breast cancer biomarker HER2 via flower-like nanozymes and DNA nanostructures. J Mater Chem B. 2019;7:3661–9.

    Article  CAS  Google Scholar 

  151. Anandhi P, Rajeshkumar S. Copper nanoparticles in wound healing: a review. J Surv Fish Sci. 2023;10:49–63.

    Google Scholar 

  152. Baranwal J, Barse B, Di Petrillo A, Gatto G, Pilia L, Kumar A. Nanoparticles in cancer diagnosis and treatment. Materials. 2023;16:5354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Gedi V, Kim Y-P. Detection and characterization of cancer cells and pathogenic bacteria using aptamer-based nano-conjugates. Sensors. 2014;14:18302–7.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhang Y, Xu Y, Li N, Qi N, Peng L, Yang M, et al. An ultrasensitive dual-signal ratio electrochemical aptamer biosensor for the detection of HER2. Colloids Surf B. 2023;222: 113118.

    Article  CAS  Google Scholar 

  155. Yang X-H, Sun S, Liu P, Wang K-M, Wang Q, Liu J-B, Huang J, He L-L. A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles. Chin Chem Lett. 2014;25:9–14.

    Article  CAS  Google Scholar 

  156. Zhu Y, Wang H, Wang L, Zhu J, Jiang W. Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. ACS Appl Mater Interfaces. 2016;8:2573–81.

    Article  CAS  PubMed  Google Scholar 

  157. Maiyo F, Singh M. Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomedicine. 2017;12:1075–89.

    Article  CAS  PubMed  Google Scholar 

  158. Tan HW, Mo H-Y, Lau AT, Xu Y-M. Selenium species: current status and potentials in cancer prevention and therapy. Int J Mol Sci. 2019;20:75.

    Article  Google Scholar 

  159. Jalalian SH, Ramezani M, Abnous K, Taghdisi SM. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett. 2018;416:87–93.

    Article  CAS  PubMed  Google Scholar 

  160. Liu ML, Zou HY, Li CM, Li RS, Huang CZ. Aptamer-modified selenium nanoparticles for dark-field microscopy imaging of nucleolin. Chem Commun. 2017;53:13047–50.

    Article  CAS  Google Scholar 

  161. Meng F-L, Wang W, Jia W-D. Diagnostic and prognostic significance of serum miR-24-3p in HBV-related hepatocellular carcinoma. Med Oncol. 2014;31:1–6.

    Article  CAS  Google Scholar 

  162. Zhang X, Li S, Jin X, Li X. Aptamer based photoelectrochemical cytosensor with layer-by-layer assembly of CdSe semiconductor nanoparticles as photoelectrochemically active species. Biosens Bioelectron. 2011;26:3674–8.

    Article  CAS  PubMed  Google Scholar 

  163. Xu Y, Zhang Y, Li N, Yang S, Chen J, Hou J, et al. An ultrasensitive ratiometric electrochemical aptasensor based on metal-organic frameworks and nanoflower-like Bi2CuO4 for human epidermal growth factor receptor 2 detection. Bioelectrochemistry. 2023;154: 108542.

    Article  CAS  PubMed  Google Scholar 

  164. Wu C-W, Harroun SG, Lien C-W, Chang H-T, Unnikrishnan B, Lai IP-J, et al. Self-templated formation of aptamer-functionalized copper oxide nanorods with intrinsic peroxidase catalytic activity for protein and tumor cell detection. Sens Actuators B. 2016;227:100–7.

    Article  CAS  Google Scholar 

  165. Zhang Y, Yu Y, Kang K, Wang X, Zhu N, Wang X, et al. Nano-magnetic aptamer sensor incorporating AND logic recognition-launched hybridization chain reaction for organ origin identification of circulating tumor cells. Nano Today. 2023;49: 101817.

    Article  CAS  Google Scholar 

  166. Yu MK, Kim D, Lee IH, So JS, Jeong YY, Jon S. Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small. 2011;7:2241–9.

    Article  CAS  PubMed  Google Scholar 

  167. Wang AZ, Bagalkot V, Vasilliou CC, Gu F, Alexis F, Zhang L, et al. Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem. 2008;3:1311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Erkmen C, Tığ GA, Uslu B. Nanomaterial-based sandwich-type electrochemical aptasensor platform for sensitive voltammetric determination of leptin. Microchim Acta. 2022;189:396.

    Article  CAS  Google Scholar 

  169. Erkmen C, Tig GA, Bengi U. First label-free impedimetric aptasensor based on Au NPs/TiO2 NPs for the determination of leptin. Sens Actuators B. 2022;358: 131420.

    Article  CAS  Google Scholar 

  170. Pla L, Sancenon F, Martinez-Bisbal MC, Banuls C, Estan N, Botello-Marabotto M, et al. A new 8-oxo-7, 8–2′ deoxyguanosine nanoporous anodic alumina aptasensor for colorectal cancer diagnosis in blood and urine. Nanoscale. 2021;13:8648–57.

    Article  CAS  PubMed  Google Scholar 

  171. Sargazi S, Simge E, Mobashar A, Gelen SS, Rahdar A, Ebrahimi N, et al. Aptamer-conjugated carbon-based nanomaterials for cancer and bacteria theranostics: a review. Chem Biol Interact. 2022;361: 109964.

    Article  CAS  PubMed  Google Scholar 

  172. Pasinszki T, Krebsz M, Tung TT, Losic D. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors. 2017;17:1919.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Chen Q, Zhang Z, Xie L, Huang C, Lin X, Tang W, et al. A one-step aptasensor for ultrasensitive detection of lung cancer marker homocysteine based on multifunctional carbon nanotubes by square-wave voltammetry. Bioelectrochemistry. 2023;153: 108464.

    Article  CAS  PubMed  Google Scholar 

  174. Hao Z, Pan Y, Huang C, Wang Z, Zhao X. Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomed Microdevices. 2019;21:1–9.

    Article  CAS  Google Scholar 

  175. Gedi V, Song CK, Kim GB, Lee JO, Oh E, Shin BS, et al. Sensitive on-chip detection of cancer antigen 125 using a DNA aptamer/carbon nanotube network platform. Sens Actuators B. 2018;256:89–97.

    Article  CAS  Google Scholar 

  176. Li C, Meng Y, Wang S, Qian M, Wang J, Lu W, et al. Mesoporous carbon nanospheres featured fluorescent aptasensor for multiple diagnosis of cancer in vitro and in vivo. ACS Nano. 2015;9:12096–103.

    Article  CAS  PubMed  Google Scholar 

  177. Mohammadpour Z, Kamankesh M, Walsh T, Ghorbanzadeh S, Hamdi D, Akbari M, et al. A review on polymeric nanocomposites for the electrochemical sensing of breast cancer biomarkers. Microchem J. 2023;195:109528.

    Article  CAS  Google Scholar 

  178. Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly imprinted polymer based sensors for medical applications. Sensors. 2019;19:1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Foroozandeh A, Abdouss M, SalarAmoli H, Pourmadadi M, Yazdian F. An electrochemical aptasensor based on g-C3N4/Fe3O4/PANI nanocomposite applying cancer antigen_125 biomarkers detection. Process Biochem. 2023;127:82–91.

    Article  CAS  Google Scholar 

  180. Wang D-E, Gao X, You S, Chen M, Ren L, Sun W, et al. Aptamer-functionalized polydiacetylene liposomes act as a fluorescent sensor for sensitive detection of MUC1 and targeted imaging of cancer cells. Sens Actuators B. 2020;309: 127778.

    Article  CAS  Google Scholar 

  181. Lyu Y, Cui D, Huang J, Fan W, Miao Y, Pu K. Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew Chem. 2019;131:5037–41.

    Article  Google Scholar 

  182. Liu Y, Dykstra G. Recent progress on electrochemical (bio) sensors based on aptamer-molecularly imprinted polymer dual recognition. Sens Actuators Rep. 2022;4:100112.

    Article  Google Scholar 

  183. Zhang C-H, Wang H, Liu J-W, Sheng Y-Y, Chen J, Zhang P, et al. Amplified split aptamer sensor delivered using block copolymer nanoparticles for small molecule imaging in living cells. ACS Sens. 2018;3:2526–31.

    Article  CAS  PubMed  Google Scholar 

  184. Hao N, Jiang L, Qian J, Wang K. Ultrasensitive electrochemical ochratoxin A aptasensor based on CdTe quantum dots functionalized graphene/Au nanocomposites and magnetic separation. J Electroanal Chem. 2016;781:332–8.

    Article  CAS  Google Scholar 

  185. Patil PO, Pandey GR, Patil AG, Borse VB, Deshmukh PK, Patil DR, et al. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: a review. Biosens Bioelectron. 2019;139: 111324.

    Article  CAS  PubMed  Google Scholar 

  186. Shan H, Li X, Liu L, Song D, Wang Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J Mater Chem B. 2020;8:5808–25.

    Article  CAS  PubMed  Google Scholar 

  187. Chen Y, Chen J, Guo D, Yang P, Chen S, Zhao C, Xu C, Zhang Q, Lin C, Zhong S. Tryptophan metabolites as biomarkers for esophageal cancer susceptibility, metastasis, and prognosis. Front Oncol. 2022;12: 800291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Khoshsafar H, Bagheri H, Hashemi P, Bordbar MM, Madrakian T, Afkhami A. Combination of an aptamer-based immunochromatography assay with nanocomposite-modified screen-printed electrodes for discrimination and simultaneous determination of tryptophan enantiomers. Talanta. 2023;253: 124090.

    Article  CAS  Google Scholar 

  189. Wei B, Mao K, Liu N, Zhang M, Yang Z. Graphene nanocomposites modified electrochemical aptamer sensor for rapid and highly sensitive detection of prostate specific antigen. Biosens Bioelectron. 2018;121:41–6.

    Article  CAS  PubMed  Google Scholar 

  190. Yazdanparast S, Benvidi A, Banaei M, Nikukar H, Tezerjani MD, Azimzadeh M. Dual-aptamer based electrochemical sandwich biosensor for MCF-7 human breast cancer cells using silver nanoparticle labels and a poly (glutamic acid)/MWNT nanocomposite. Microchim Acta. 2018;185:1–10.

    Article  CAS  Google Scholar 

  191. Naaz S, Sachdev S, Husain R, Pandey V, Ansari MI. Nanomaterials and nanocomposites: significant uses in plant performance, production, and toxicity response. In: Nanomaterials and nanocomposites exposures to plants: response, interaction, phytotoxicity and defense mechanisms. Springer; 2023. p. 1–18.

  192. Sharma A, Anjana RH, Goswami S. A comprehensive review on the heavy metal removal for water remediation by the application of lignocellulosic biomass-derived nanocellulose. J Polym Environ. 2022;30:1–18.

    Article  CAS  Google Scholar 

  193. Mo T, Liu X, Luo Y, Zhong L, Zhang Z, Li T, et al. Aptamer-based biosensors and application in tumor theranostics. Cancer Sci. 2022;113:7–16.

    Article  CAS  PubMed  Google Scholar 

  194. Mahmoudpour M, Ding S, Lyu Z, Ebrahimi G, Du D, Dolatabadi JEN, et al. Aptamer functionalized nanomaterials for biomedical applications: recent advances and new horizons. Nano Today. 2021;39: 101177.

    Article  CAS  Google Scholar 

  195. de Valega Negrao CvZ, Cerize NNP, Justo-Junior ADS, Liszbinski RB, Meneguetti GP, Araujo L, et al. Iron oxide nanoparticles coated with biodegradable block-copolymer PDMAEMA-b-PMPC and functionalized with aptamer for HER2 breast cancer cell identification. bioRxiv. 2023:2023-06.

  196. Mazloum-Ardakani M, Barazesh B, Moshtaghiun SM. A distinguished cancer-screening package containing a DNA sensor and an aptasensor for early and certain detection of acute lymphoblastic leukemia. Clin Chim Acta. 2019;497:41–7.

    Article  CAS  PubMed  Google Scholar 

  197. Mazloum-Ardakani M, Barazesh B, Moshtaghioun SM. An aptasensor based on electrosynthesized conducting polymers, Cu2O-carbon dots and biosynthesized gold nanoparticles, for monitoring carcinoembryonic antigen. J Nanostruct. 2019;9:659–68.

    CAS  Google Scholar 

  198. Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, et al. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: a comprehensive overview of recent trends. Biotechnol Prog. 2023;39: e3366.

    Article  CAS  PubMed  Google Scholar 

  199. Kumar V, Kukkar D, Hashemi B, Kim KH, Deep A. Advanced functional structure-based sensing and imaging strategies for cancer detection: possibilities, opportunities, challenges, and prospects. Adv Funct Mater. 2019;29:1807859.

    Article  Google Scholar 

  200. Hejji L, Azzouz A, Kukkar D, Kim K-H. Recent advancements in nanomaterials-based aptasensors for the detection of emerging contaminants in foodstuffs. TrAC Trends Anal Chem. 2023;166:117194.

    Article  CAS  Google Scholar 

  201. Klinghammer S, Voitsekhivska T, Licciardello N, Kim K, Baek C-K, Cho H, et al. Nanosensor-based real-time monitoring of stress biomarkers in human saliva using a portable measurement system. ACS Sens. 2020;5:4081–91.

    Article  CAS  PubMed  Google Scholar 

  202. Sharifi S, Vahed SZ, Ahmadian E, Dizaj SM, Eftekhari A, Khalilov R, et al. Detection of pathogenic bacteria via nanomaterials-modified aptasensors. Biosens Bioelectron. 2020;150: 111933.

    Article  CAS  PubMed  Google Scholar 

  203. Purohit B, Vernekar PR, Shetti NP, Chandra P. Biosensor nanoengineering: design, operation, and implementation for biomolecular analysis. Sens Int. 2020;1: 100040.

    Article  Google Scholar 

  204. Muhammad N, Hoo LT, Ahmad AN, Mohamad A, Abdullah Lim S. Accuracy of biosensors as rapid diagnostic and biochemical monitoring tools for non-communicable diseases management. In: Joshi SN, Chandra P, editors. Advanced micro-and nano-manufacturing technologies: applications in biochemical and biomedical engineering. Singapore: Springer; 2022. p. 57–75.

    Chapter  Google Scholar 

  205. Jiang Y, Cui S, Xia T, Sun T, Tan H, Yu F, et al. Real-time monitoring of heavy metals in healthcare via twistable and washable smartsensors. Anal Chem. 2020;92:14536–41.

    Article  CAS  PubMed  Google Scholar 

  206. Timilsina SS, Jolly P, Durr N, Yafia M, Ingber DE. Enabling multiplexed electrochemical detection of biomarkers with high sensitivity in complex biological samples. Acc Chem Res. 2021;54:3529–39.

    Article  CAS  PubMed  Google Scholar 

  207. Röthlisberger P, Gasse C, Hollenstein M. Nucleic acid aptamers: emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci. 2017;18:2430.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G Jr, et al. Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol. 2004;22:1423–8.

    Article  CAS  PubMed  Google Scholar 

  209. Bompiani K, Monroe D, Church F, Sullenger B. A high affinity, antidote-controllable prothrombin and thrombin-binding RNA aptamer inhibits thrombin generation and thrombin activity. J Thromb Haemost. 2012;10:870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ausländer D, Wieland M, Ausländer S, Tigges M, Fussenegger M. Rational design of a small molecule-responsive intramer controlling transgene expression in mammalian cells. Nucleic Acids Res. 2011;39: e155.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Göringer HU. Parasite-specific aptamers as biosynthetic reagents and potential pharmaceuticals. Trends Parasitol. 2012;28:106–13.

    Article  PubMed  Google Scholar 

  212. Lakhin AV, Kazakov AA, Makarova AV, Pavlov YI, Efremova AS, Shram SI, et al. Isolation and characterization of high affinity aptamers against DNA polymerase iota. Nucleic Acid Ther. 2012;22:49–57.

    Article  CAS  PubMed  Google Scholar 

  213. Eulberg D, Buchner K, Maasch C, Klussmann S. Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res. 2005;33: e45.

    Article  PubMed  PubMed Central  Google Scholar 

  214. NajafiKhoshnoo S, Kim T, Tavares-Negrete JA, Pei X, Das P, Lee SW, et al. A 3D nanomaterials-printed wearable, battery-free, biocompatible, flexible, and wireless pH sensor system for real-time health monitoring. Adv Mater Technol. 2023;8:2201655.

    Article  CAS  Google Scholar 

  215. Bilibana MP, Citartan M, Fuku X, Jijana AN, Mathumba P, Iwuoha E. Aptamers functionalized hybrid nanomaterials for algal toxins detection and decontamination in aquatic system: current progress, opportunities, and challenges. Ecotoxicol Environ Saf. 2022;232: 113249.

    Article  CAS  PubMed  Google Scholar 

  216. Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: a review of current progress. J Control Release. 2022;346:405–20.

    Article  CAS  PubMed  Google Scholar 

  217. Langlois NI, Ma KY, Clark HA. Nucleic acid nanostructures for in vivo applications: the influence of morphology on biological fate. Appl Phys Rev. 2023;10: 011304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Yu X, Sha L, Liu Q, Zhao Y, Fang H, Cao Y, et al. Recent advances in cell membrane camouflage-based biosensing application. Biosens Bioelectron. 2021;194: 113623.

    Article  CAS  PubMed  Google Scholar 

  219. Chun L, Kim S-E, Cho M, Choe W-S, Nam J, Lee DW, Lee Y. Electrochemical detection of HER2 using single stranded DNA aptamer modified gold nanoparticles electrode. Sens Actuators B. 2013;186:446–50.

    Article  CAS  Google Scholar 

  220. Li G, Zeng J, Liu H, Ding P, Liang J, Nie X, et al. A fluorometric aptamer nanoprobe for alpha-fetoprotein by exploiting the FRET between 5-carboxyfluorescein and palladium nanoparticles. Microchim Acta. 2019;186:314.

    Article  Google Scholar 

  221. Zhu N, Li G, Zhou J, Zhang Y, Kang K, Ying B, et al. A light-up fluorescence resonance energy transfer magnetic aptamer-sensor for ultra-sensitive lung cancer exosome detection. J Mater Chem B. 2021;9:2483–93.

    Article  CAS  PubMed  Google Scholar 

  222. Sun D, Lu J, Zhong Y, Yu Y, Wang Y, Zhang B, et al. Sensitive electrochemical aptamer cytosensor for highly specific detection of cancer cells based on the hybrid nanoelectrocatalysts and enzyme for signal amplification. Biosens Bioelectron. 2016;75:301–7.

    Article  CAS  PubMed  Google Scholar 

  223. Wang Y, Zhang Y, Yan T, Fan D, Du B, Ma H, et al. Ultrasensitive electrochemical aptasensor for the detection of thrombin based on dual signal amplification strategy of Au@ GS and DNA-CoPd NPs conjugates. Biosens Bioelectron. 2016;80:640–6.

    Article  CAS  PubMed  Google Scholar 

  224. Wu X, Fu P, Ma W, Xu L, Kuang H, Xu C. SERS-active silver nanoparticle trimers for sub-attomolar detection of alpha fetoprotein. RSC Adv. 2015;5:73395–8.

    Article  CAS  Google Scholar 

  225. Wu Z, Li H, Liu Z. An aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Sens Actuators B. 2015;206:531–7.

    Article  CAS  Google Scholar 

  226. Xu L, Yan W, Ma W, Kuang H, Wu X, Liu L, et al. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers. Adv Mater. 2015;27:1706–11.

    Article  CAS  PubMed  Google Scholar 

  227. Yu T, Dai P-P, Xu J-J, Chen H-Y. Highly sensitive colorimetric cancer cell detection based on dual signal amplification. ACS Appl Mater Interfaces. 2016;8:4434–41.

    Article  CAS  PubMed  Google Scholar 

  228. Zhao S, Ma W, Xu L, Wu X, Kuang H, Wang L, et al. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented–AU pyramid superstructure. Biosens Bioelectron. 2015;68:593–7.

    Article  CAS  PubMed  Google Scholar 

  229. Zhu D, Li W, Wen H-M, Yu S, Miao Z-Y, Kang A, et al. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF165 based on Mn-doped ZnS quantum dots. Biosens Bioelectron. 2015;74:1053–60.

    Article  CAS  PubMed  Google Scholar 

  230. Tung NT, Tue PT, Thi Ngo Clien T, Ohno Y, Maehashi K, Matsumoto K, et al. Peptide aptamer-modified single-walled carbon nanotube-based transistors for high-performance biosensors. Sci Rep. 2017;7:17881.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Miao X, Li Z, Zhu A, Feng Z, Tian J, Peng X. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Biosens Bioelectron. 2016;83:39–44.

    Article  CAS  PubMed  Google Scholar 

  232. Ma W, Yin H, Xu L, Wu X, Kuang H, Wang L, et al. Ultrasensitive aptamer-based SERS detection of PSAs by heterogeneous satellite nanoassemblies. Chem Commun. 2014;50:9737–40.

    Article  CAS  Google Scholar 

  233. Li Y, Zhang Y, Zhao M, Zhou Q, Wang L, Wang H, et al. A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells. Chem Commun. 2016;52:3959–61.

    Article  CAS  Google Scholar 

  234. Tagit O, Hildebrandt N. Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles. ACS Sens. 2017;2:31–45.

    Article  CAS  PubMed  Google Scholar 

  235. Feng J, Wu X, Ma W, Kuang H, Xu L, Xu C. A SERS active bimetallic core–satellite nanostructure for the ultrasensitive detection of Mucin-1. Chem Commun. 2015;51:14761–3.

    Article  CAS  Google Scholar 

  236. Shi X, Chen L, Chen S, Sun D. Electrochemical aptasensors for the detection of hepatocellular carcinoma-related biomarkers. New J Chem. 2021;45:15158–69.

    Article  CAS  Google Scholar 

  237. Chen Q, Zhang Z, Xie L, Huang C, Lin X, Tang W, et al. A one-step aptasensor for ultrasensitive detection of lung cancer marker homocysteine based on multifunctional carbon nanotubes by square-wave voltammetry. Bioelectrochemistry. 2023;153:108464.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge their respective departments and universities for the support during the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaison Jeevanandam.

Ethics declarations

Funding

No funding has been received to conduct this research or prepare this article.

Conflicts of Interest/Competing Interests

Thimmaiah Bargavi Ram, Saravanan Krishnan, Jaison Jeevanandam, Michael K. Danquah, and Sabu Thomas have no conflicts of interest that are directly relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Author’ Contributions

First draft: TBR and SK; conceptualization, supervision, final draft, and review: JJ; supervision and expert review of manuscript: MKD and ST.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 182 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram, T.B., Krishnan, S., Jeevanandam, J. et al. Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection. Mol Diagn Ther (2024). https://doi.org/10.1007/s40291-024-00717-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40291-024-00717-x

Navigation