Skip to main content

Advertisement

Log in

Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The distinct biophysical and pharmaceutical properties of camelid single-domain antibodies, referred to as VHHs or nanobodies, are associated with their nanometric dimensions, elevated stability, and antigen recognition capacity. These biomolecules can circumvent a number of diagnostic system limitations, especially those related to the size and stability of conventional immunoglobulins currently used in enzyme-linked immunosorbent assays and point-of-care, electrochemical, and imaging assays. In these formats, VHHs are directionally conjugated to different molecules, such as metallic nanoparticles, small peptides, and radioisotopes, which demonstrates their comprehensive versatility. Thus, the application of VHHs in diagnostic systems range from the identification of cancer cells to the detection of degenerative disease biomarkers, viral antigens, bacterial toxins, and insecticides. The improvements of sensitivity and specificity are among the central benefits resulting from the use of VHHs, which are indispensable parameters for high-quality diagnostics. Therefore, this review highlights the main biotechnological advances related to camelid single-domain antibodies and their use in in vitro and in vivo diagnostic approaches for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams KL, Stumpf M, Naiman NE, Ding S, Garrett M, Gobillot T, et al. Identification of HIV gp41-specific antibodies that mediate killing of infected cells. PLOS Pathog. 2019;15(2):e1007572.

  2. Wenzel EV, Bosnak M, Tierney R, Schubert M, Brown J, Dübel S, et al. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep. 2020;10:1–21.

    Article  Google Scholar 

  3. Schneider DW, Heitner T, Alicke B, Light DR, McLean K, Satozawa N, et al. In vivo biodistribution, PET imaging, and tumor accumulation of 86Y- and 111In-antimindin/RG-1, engineered antibody fragments in LNCaP tumor-bearing nude mice. J Nucl Med. 2009;50:435–43.

    Article  CAS  PubMed  Google Scholar 

  4. Dominik PK, Borowska MT, Dalmas O, Kim SS, Perozo E, Keenan RJ, et al. Conformational chaperones for structural studies of membrane proteins using antibody phage display with nanodiscs. Structure. 2016;24:300–9.

    Article  CAS  PubMed  Google Scholar 

  5. Buser DP, Schleicher KD, Prescianotto-Baschong C, Spiess M. A versatile nanobody-based toolkit to analyze retrograde transport from the cell surface. Proc Natl Acad Sci U S A. 2018;115:E6227–36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zimmermann I, Egloff P, Hutter CAJ, Arnold FM, Stohler P, Bocquet N, et al. Synthetic single domain antibodies for the conformational trapping of membrane proteins. Elife. 2018;3:1–32.

    Google Scholar 

  7. Ren X, Yan J, Wu D, Wei Q, Wan Y. Nanobody-based apolipoprotein E immunosensor for point-of-care testing. ACS Sensors. 2017;2:1267–71.

    Article  CAS  PubMed  Google Scholar 

  8. Sroga P, Safronetz D, Stein DR. Nanobodies: a new approach for the diagnosis and treatment of viral infectious diseases. Future Virol. 2020;15:fvl-2019-0167.

  9. Gasser M, Waaga-Gasser AM. Therapeutic antibodies in cancer therapy. Adv Exp Med Biol. 2016;917:95–120.

    Article  CAS  PubMed  Google Scholar 

  10. Prado NDR, Pereira SS, da Silva MP, Morais MSS, Kayano AM, Moreira-Dill LS, et al. Inhibition of the myotoxicity induced by Bothrops jararacussu venom and isolated phospholipases A2 by specific camelid single-domain antibody fragments. PLoS One. 2016;11:e0151363.

  11. Luiz MB, Pereira SS, Prado NDR, Gonçalves NR, Kayano AM, Moreira-Dill LS, et al. Camelid single-domain antibodies (VHHs) against crotoxin: a basis for developing modular building blocks for the enhancement of treatment or diagnosis of crotalic envenoming. Toxins (Basel). 2018;10:142.

    Article  PubMed Central  Google Scholar 

  12. Haraya K, Tachibana T, Igawa T. Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab Pharmacokinet. 2019;34:25–41.

    Article  CAS  PubMed  Google Scholar 

  13. Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs. 2020;34:11–26.

    Article  PubMed  Google Scholar 

  14. Chiu ML, Gilliland GL. Engineering antibody therapeutics. Curr Opin Struct Biol. 2016;38:163–73.

    Article  CAS  PubMed  Google Scholar 

  15. Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody fragment and affibody immunoPET imaging agents: radiolabelling strategies and applications. ChemMedChem. 2018;13:2466–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee CH, Lee YC, Lee YL, Leu SJ, Lin LT, Chen CC, et al. Single chain antibody fragment against venom from the snake Daboia russelii formosensis. Toxins (Basel). 2017;9:347.

    Article  PubMed Central  Google Scholar 

  17. Pan X, Zhou P, Fan T, Wu Y, Zhang J, Shi X, et al. Immunoglobulin fragment F(ab’)2 against RBD potently neutralizes SARS-CoV-2 in vitro. Antiviral Res. 2020;182:104868.

  18. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005;23:1126–36.

    Article  CAS  PubMed  Google Scholar 

  19. Schroeder HWJ, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125:S41-52.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abbas AK, Lichtman AH, Pillai S. Livro: Imunologia Celular e Molecular. In: Abbas AK, Pillai S, Lichtman AH editors. Livros de medicina. 8th ed. Elsevier; 2015.

  21. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–97.

    Article  CAS  PubMed  Google Scholar 

  22. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363:446–8.

    Article  CAS  PubMed  Google Scholar 

  23. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LGJ, de Geus B. Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol. 2000;37:579–90.

    Article  CAS  PubMed  Google Scholar 

  24. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparison of llama V(H) sequences from conventional and heavy chain antibodies. Mol Immunol. 1997;34:1121–31.

    Article  CAS  PubMed  Google Scholar 

  25. Siontorou CG. Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomed. 2013;8:4215–27.

    Article  Google Scholar 

  26. Arbabi-Ghahroudi M. Camelid single-domain antibodies: historical perspective and future outlook. Front Immunol. 2017;8:1–8.

    Article  Google Scholar 

  27. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, et al. Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006;103:4586–91.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Henry KA, MacKenzie CR. Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs. 2018;10:815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Muyldermans S, Lauwereys M. Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. J Mol Recognit. 1999;12:131–40.

    Article  CAS  PubMed  Google Scholar 

  30. Kolkman JA, Law DA. Nanobodies: from llamas to therapeutic proteins. Drug Discov Today Technol. 2010;7:e139–46.

    Article  CAS  Google Scholar 

  31. Legler PM, Compton JR, Hale ML, Anderson GP, Olson MA, Millard CB, et al. Stability of isolated antibody-antigen complexes as a predictive tool for selecting toxin neutralizing antibodies. MAbs. 2017;9:43–57.

    Article  CAS  PubMed  Google Scholar 

  32. Liu JL, Goldman ER, Zabetakis D, Walper SA, Turner KB, Shriver-Lake LC, et al. Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond. Microb Cell Fact. 2015;14:158.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Turner KB, Zabetakis D, Goldman ER, Anderson GP. Enhanced stabilization of a stable single domain antibody for SEB toxin by random mutagenesis and stringent selection. Protein Eng Des Sel. 2014;27:89–95.

    Article  CAS  PubMed  Google Scholar 

  34. Turner KB, Liu JL, Zabetakis D, Lee AB, Anderson GP, Goldman ER. Improving the biophysical properties of anti-ricin single-domain antibodies. Biotechnol Rep. 2015;6:27–35.

    Article  Google Scholar 

  35. Walper SA, Battle SR, Audrey Brozozog Lee P, Zabetakis D, Turner KB, Buckley PE, et al. Thermostable single domain antibody-maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Anal Biochem. 2014;447:64–73.

  36. Goldman ER, Liu JL, Zabetakis D, Anderson GP. Enhancing stability of camelid and shark single domain antibodies: an overview. Front Immunol. 2017;8:1–11.

    Article  Google Scholar 

  37. Pereira SS, Moreira-Dill LS, Morais MSS, Prado NDR, Barros ML, Koishi AC, et al. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of hantavirus pulmonary syndrome. PLoS One. 2014;9:e108067.

  38. Liu CC, Yu JS, Wang PJ, Hsiao YC, Liu CH, Chen YC, et al. Development of sandwich ELISA and lateral flow strip assays for diagnosing clinically significant snakebite in Taiwan. PLoS Negl Trop Dis. 2018;12:1–23.

    Article  Google Scholar 

  39. Chen Q, Zhou Y, Yu J, Liu W, Li F, Xian M, et al. An efficient constitutive expression system for anti-CEACAM5 nanobody production in the yeast Pichia pastoris. Protein Expr Purif. 2019;155:43–7.

    Article  CAS  PubMed  Google Scholar 

  40. Gómez-Sebastián S, Nuñez MC, Garaicoechea L, Alvarado C, Mozgovoj M, Lasa R, et al. Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. BMC Biotechnol. 2012;12:59.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ashour J, Schmidt FI, Hanke L, Cragnolini J, Cavallari M, Altenburg A, et al. Intracellular expression of camelid single-domain antibodies specific for influenza virus nucleoprotein uncovers distinct features of its nuclear localization. J Virol. 2015;89:2792–800.

    Article  PubMed  Google Scholar 

  42. Saberianfar R, Chin-Fatt A, Scott A, Henry KA, Topp E, Menassa R. Plant-produced chimeric VHH-sIgA against enterohemorrhagic E. coli intimin shows cross-serotype inhibition of bacterial adhesion to epithelial cells. Front Plant Sci. 2019;10:270.

  43. Nguyen-Duc T, Peeters E, Muyldermans S, Charlier D, Hassanzadeh-Ghassabeh G. Nanobody®-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites. Nucleic Acids Res. 2013;41:e59.

  44. Pardon E, Laeremans T, Triest S, Rasmussen SGF, Wohlkönig A, Ruf A, et al. A general protocol for the generation of nanobodies for structural biology. Nat Protoc. 2014;9:674–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Götzke H, Kilisch M, Martínez-Carranza M, Sograte-Idrissi S, Rajavel A, Schlichthaerle T, et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun. 2019;10:4403.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vrentas CE, Moayeri M, Keefer AB, Greaney AJ, Tremblay J, O’Mard D, et al. A diverse set of single-domain antibodies (VHHs) against the anthrax toxin lethal and edema factors provides a basis for construction of a bispecific agent that protects against anthrax infection. J Biol Chem. 2016;291:21596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernandes CFC, Pereira S dos S, Luiz MB, Zuliani JP, Furtado GP, Stabeli RG. Camelid single-domain antibodies as an alternative to overcome challenges related to the prevention, detection, and control of neglected tropical diseases. Front Immunol. 2017;8:1–8.

  48. Bailon Calderon H, Yaniro Coronel VO, Cáceres Rey OA, Colque Alave EG, Leiva Duran WJ, Padilla Rojas C, et al. Development of nanobodies against hemorrhagic and myotoxic components of Bothrops atrox snake venom. Front Immunol. 2020;11:1–12.

    Article  Google Scholar 

  49. Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H, Malinauskas T, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol. 2020;27:846–54.

    Article  CAS  PubMed  Google Scholar 

  50. Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell. 2020;181:1004–15.e15.

  51. Abu Alshamat E, Kweider M, Abbady AQ. Camel nanobodies: promising molecular tools against leishmaniasis. Parasite Immunol. 2020;42(9):e12718.

  52. Qiu Y Lou, He QH, Xu Y, Bhunia AK, Tu Z, Chen B, et al. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay. Anal Chim Acta. 2015;887:201–8.

  53. Harmsen MM, Seago J, Perez E, Charleston B, Eblé PL, Dekker A. Isolation of single-domain antibody fragments that preferentially detect intact (146s) particles of foot-and-mouth disease virus for use in vaccine quality control. Front Immunol. 2017;8:960.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Doerflinger SY, Tabatabai J, Schnitzler P, Farah C, Rameil S, Sander P, et al. Development of a nanobody-based lateral flow immunoassay for detection of human norovirus. mSphere. 2016;1:1–6.

  55. Pinto-Torres JE, Goossens J, Ding J, Li Z, Lu S, Vertommen D, et al. Development of a nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Sci Rep. 2018;8:1–15.

    Article  CAS  Google Scholar 

  56. Morales-Yánez F, Trashin S, Hermy M, Sariego I, Polman K, Muyldermans S, et al. Fast one-step ultrasensitive detection of Toxocara canis antigens by a nanobody-based electrochemical magnetosensor. Anal Chem. 2019;91:11582–8.

    Article  PubMed  Google Scholar 

  57. Khaleghi S, Rahbarizadeh F, Ahmadvand D, Hosseini HRM. Anti-HER2 VHH targeted magnetoliposome for intelligent magnetic resonance imaging of breast cancer cells. Cell Mol Bioeng. 2017;10:263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramos-Gomes F, Bode J, Sukhanova A, Bozrova SV, Saccomano M, Mitkovski M, et al. Single- and two-photon imaging of human micrometastases and disseminated tumour cells with conjugates of nanobodies and quantum dots. Sci Rep. 2018;8:1–12.

    Article  CAS  Google Scholar 

  59. Chen Y-J, Chen M, Hsieh Y-C, Su Y-C, Wang C-H, Cheng C-M, et al. Development of a highly sensitive enzyme-linked immunosorbent assay (ELISA) through use of poly-protein G-expressing cell-based microplates. Sci Rep. 2018;8:17868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou D, Pei C, Yang K, Ye J, Wan S, Li Q, et al. Development and application of a monoclonal-antibody-based blocking ELISA for detection of Japanese encephalitis virus NS1 antibodies in swine. Arch Virol. 2019;164:1535–42.

    Article  CAS  PubMed  Google Scholar 

  61. Lakshmipriya T, Gopinath SCB, Hashim U, Tang TH. Signal enhancement in ELISA: biotin-streptavidin technology against gold nanoparticles. J Taibah Univ Med Sci. 2016;11:432–8.

    Google Scholar 

  62. Ducancel F, Muller BH. Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs. 2012;4:445–57.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abeijon C, Dilo J, Tremblay JM, Viana AG, Bueno LL, Carvalho SFG, et al. Use of VHH antibodies for the development of antigen detection test for visceral leishmaniasis. Parasite Immunol. 2018;40:1–10.

    Article  CAS  Google Scholar 

  64. Harmsen MM, Fijten HPD. Improved functional immobilization of llama single-domain antibody fragments to polystyrene surfaces using small peptides. J Immunoass Immunochem. 2012;33:234–51.

    Article  CAS  Google Scholar 

  65. Shriver-Lake LC, Goldman ER, Dean SN, Liu JL, Davis TM, Anderson GP. Lipid-tagged single domain antibodies for improved enzyme-linked immunosorbent assays. J Immunol Methods. 2020;481-482:112790.

  66. Li M, Zhu M, Zhang C, Liu X, Wan Y. Uniform orientation of biotinylated nanobody as an affinity binder for detection of Bacillus thuringiensis (Bt) Cry1Ac toxin. Toxins (Basel). 2014;6:3208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu M, Gong X, Hu Y, Ou W, Wan Y. Streptavidin-biotin-based directional double Nanobody sandwich ELISA for clinical rapid and sensitive detection of influenza H5N1. J Transl Med. 2014;12:1–10.

    Article  Google Scholar 

  68. Kumada Y, Kang B, Yamakawa K, Kishimoto M, Horiuchi JI. Efficient preparation and site-directed immobilization of VHH antibodies by genetic fusion of poly(methylmethacrylate)-binding peptide (PMMA-Tag). Biotechnol Prog. 2015;31:1563–70.

    Article  CAS  PubMed  Google Scholar 

  69. Ma Z, Wang T, Li Z, Guo X, Tian Y, Li Y, et al. A novel biotinylated nanobody-based blocking ELISA for the rapid and sensitive clinical detection of porcine epidemic diarrhea virus. J Nanobiotechnol. 2019;17:96.

    Article  Google Scholar 

  70. Wang Y, Li P, Majkova Z, Bever CRS, Kim HJ, Zhang Q, et al. Isolation of alpaca anti-idiotypic heavy-chain single-domain antibody for the aflatoxin immunoassay. Anal Chem. 2013;85:8298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shu M, Xu Y, Wang D, Liu X, Li Y, He Q, et al. Anti-idiotypic nanobody: a strategy for development of sensitive and green immunoassay for fumonisin B1. Talanta. 2015;143:388–93.

    Article  CAS  PubMed  Google Scholar 

  72. Xu Y, Xiong L, Li Y, Xiong Y, Tu Z, Fu J, et al. Anti-idiotypic nanobody as citrinin mimotope from a naive alpaca heavy chain single domain antibody library. Anal Bioanal Chem. 2015;407:5333–41.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang C, Zhang Q, Tang X, Zhang W, Li P. Development of an anti-idiotypic VHH antibody and toxin-free enzyme immunoassay for ochratoxin A in cereals. Toxins (Basel). 2019;11:280.

    Article  CAS  PubMed Central  Google Scholar 

  74. Vashist SK, Luong JHT. Point-of-care technologies enabling next-generation healthcare monitoring and management. Springer International Publishing; 2019.

  75. Toubanaki DK, Margaroni M, Prapas A, Karagouni E. Development of a nanoparticle-based lateral flow strip biosensor for visual detection of whole nervous necrosis virus particles. Sci Rep. 2020;10:1–12.

    Article  Google Scholar 

  76. Tomás AL, de Almeida MP, Cardoso F, Pinto M, Pereira E, Franco R, et al. Development of a gold nanoparticle-based lateral-flow immunoassay for pneumocystis pneumonia serological diagnosis at point-of-care. Front Microbiol. 2019;10:2917.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Anfossi L, Di Nardo F, Profiti M, Nogarol C, Cavalera S, Baggiani C, et al. A versatile and sensitive lateral flow immunoassay for the rapid diagnosis of visceral leishmaniasis. Anal Bioanal Chem. 2018;410:4123–34.

    Article  CAS  PubMed  Google Scholar 

  78. Wang J, Yiu B, Obermeyer J, Filipe CDM, Brennan JD, Pelton R. Effects of temperature and relative humidity on the stability of paper-immobilized antibodies. Biomacromol. 2012;13:559–64.

    Article  CAS  Google Scholar 

  79. Henderson CA, McLiesh H, Then WL, Garnier G. Activity and longevity of antibody in paper-based blood typing diagnostics. Front Chem. 2018;6:1–7.

    Article  Google Scholar 

  80. Goossens J, Sein H, Lu S, Radwanska M, Muyldermans S, Sterckx YGJ, et al. Functionalization of gold nanoparticles with nanobodies through physical adsorption. Anal Methods. 2017;9:3430–40.

    Article  CAS  Google Scholar 

  81. Loynachan CN, Thomas MR, Gray ER, Richards DA, Kim J, Miller BS, et al. Platinum nanocatalyst amplification: redefining the gold standard for lateral flow immunoassays with ultrabroad dynamic range. ACS Nano. 2018;12:279–88.

    Article  CAS  PubMed  Google Scholar 

  82. Koromyslova AD, Hansman GS. Nanobody binding to a conserved epitope promotes norovirus particle disassembly. J Virol. 2015;89:2718–30.

    Article  PubMed  Google Scholar 

  83. Fatima A, Wang H, Kang K, Xia L, Wang Y, Ye W, et al. Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis. PLoS ONE. 2014;9:1–12.

    Article  Google Scholar 

  84. Oliveira JP, Prado AR, Keijok WJ, Antunes PWP, Yapuchura ER, Guimarães MCC. Impact of conjugation strategies for targeting of antibodies in gold nanoparticles for ultrasensitive detection of 17β-estradiol. Sci Rep. 2019;9:1–8.

    Article  Google Scholar 

  85. Hattori T, Umetsu M, Nakanishi T, Sawai S, Kikuchi S, Asano R, et al. A high-affinity gold-binding camel antibody: antibody engineering for one-pot functionalization of gold nanoparticles as biointerface molecules. Bioconjug Chem. 2012;23:1934–44.

    Article  CAS  PubMed  Google Scholar 

  86. El-Moghazy AY, Huo J, Amaly N, Vasylieva N, Hammock BD, Sun G. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides. ACS Appl Mater Interfaces. 2020;12:6159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang L, Muyldermans S, Saerens D. Nanobodies® : proficient tools in diagnostics. Expert Rev Mol Diagn. 2010;10:777–85.

    Article  PubMed  Google Scholar 

  88. Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I, Lenormand P, et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016;243:1–10.

    Article  PubMed  Google Scholar 

  89. Van Audenhove I, Gettemans J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine. 2016;8:40–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Jailkhani N, Ingram JR, Rashidian M, Rickelt S, Tian C, Mak H, et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc Natl Acad Sci U S A. 2019;116:14181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. D’Huyvetter M, Aerts A, Xavier C, Vaneycken I, Devoogdt N, Gijs M, et al. Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. Contrast Media Mol Imaging. 2012;7:254–64.

    Article  PubMed  Google Scholar 

  92. Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol. 2017;8:1442.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Debie P, Devoogdt N, Hernot S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies. 2019;8:12.

    Article  CAS  PubMed Central  Google Scholar 

  94. Oliveira Sabrina, Van Dongen GAMS, Stigter-Van Walsum M, Roovers RC, Stam JC, Mali W, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012;11:33–46.

  95. Romao E, Krasniqi A, Maes L, Vandenbrande C, Sterckx YGJ, Stijlemans B, et al. Identification of nanobodies against the acute. Int J Mol Sci. 2020;21:310.

    Article  CAS  PubMed Central  Google Scholar 

  96. Debie P, Van Quathem J, Hansen I, Bala G, Massa S, Devoogdt N, et al. Effect of dye and conjugation chemistry on the biodistribution profile of near-infrared-labeled nanobodies as tracers for image-guided surgery. Mol Pharm. 2017;14:1145–53.

    Article  CAS  PubMed  Google Scholar 

  97. Fan X, Wang L, Guo Y, Tu Z, Li L, Tong H, et al. Ultrasonic nanobubbles carrying anti-PSMA nanobody: construction and application in prostate cancer-targeted imaging. PLoS ONE. 2015;10:1–13.

    Google Scholar 

  98. Punjabi M, Xu L, Ochoa-Espinosa A, Kosareva A, Wolff T, Murtaja A, et al. Ultrasound molecular imaging of atherosclerosis with nanobodies. Arterioscler Thromb Vasc Biol. 2019;39:2520–30.

    Article  CAS  PubMed  Google Scholar 

  99. Vaneycken I, Govaert J, Vincke C, Caveliers V, Lahoutte T, De Baetselier P, et al. In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT. J Nucl Med. 2010;51:1099–106.

    Article  CAS  PubMed  Google Scholar 

  100. Ashton JR, Gottlin EB, Patz EF, West JL, Badea CT. A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS One. 2018;13:e0206950.

  101. Senders ML, Hernot S, Carlucci G, van de Voort JC, Fay F, Calcagno C, et al. Nanobody-facilitated multiparametric PET/MRI phenotyping of atherosclerosis. JACC Cardiovasc Imaging. 2019;12:2015–26.

    Article  PubMed  Google Scholar 

  102. Xing Y, Chand G, Liu C, Cook GJR, O’Doherty J, Zhao L, et al. Early phase I study of a 99mTc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer. J Nucl Med. 2019;60:1213–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Huang L, Gainkam LOT, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, et al. SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol. 2008;10:167–75.

    Article  PubMed  Google Scholar 

  104. Gainkam LOT, Keyaerts M, Caveliers V, Devoogdt N, Vanhove C, Van Grunsven L, et al. Correlation between epidermal growth factor receptor-specific nanobody uptake and tumor burden: a tool for noninvasive monitoring of tumor response to therapy. Mol Imaging Biol. 2011;13:940–8.

    Article  PubMed  Google Scholar 

  105. Pant K, Neuber C, Zarschler K, Wodtke J, Meister S, Haag R, et al. Active targeting of dendritic polyglycerols for diagnostic cancer imaging. Small. 2020;16: e1905013.

  106. Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 2011;25:2433–46.

    Article  CAS  PubMed  Google Scholar 

  107. D’Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with a 177 Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4:708–20.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57:27–33.

    Article  CAS  PubMed  Google Scholar 

  109. Li C, Zhang Y, Wang L, Feng H, Xia X, Ma J, et al. A novel multivalent 99m Tc-labeled EG2-C4bpα antibody for targeting the epidermal growth factor receptor in tumor xenografts. Nucl Med Biol. 2015;42:547–54.

    Article  CAS  PubMed  Google Scholar 

  110. Piramoon M, Hosseinimehr SJ, Omidfar K, Noaparast Z, Abedi SM. 99m Tc-anti-epidermal growth factor receptor nanobody for tumor imaging. Chem Biol Drug Des. 2017;89:498–504.

    Article  CAS  PubMed  Google Scholar 

  111. Warnders FJ, Van Scheltinga AGT, Knuehl C, Van Roy M, De Vries EFJ, Kosterink JGW, et al. Human epidermal growth factor receptor 3-specific tumor uptake and biodistribution of 89Zr-MSB0010853 visualized by real-time and noninvasive pet imaging. J Nucl Med. 2017;58:1210–5.

    Article  CAS  PubMed  Google Scholar 

  112. Van Elssen CHMJ, Rashidian M, Vrbanac V, Wucherpfennig KW, El Habre Z, Sticht J, et al. Noninvasive imaging of human immune responses in a human xenograft model of graft-versus-host disease. J Nucl Med. 2017;58:1003–8.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110:927–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zheng F, Devoogdt N, Sparkes A, Morias Y, Abels C, Stijlemans B, et al. Monitoring liver macrophages using nanobodies targeting Vsig4: concanavalin A induced acute hepatitis as paradigm. Immunobiology. 2015;220:200–9.

    Article  CAS  PubMed  Google Scholar 

  115. Zheng F, Sparkes A, De Baetselier P, Schoonooghe S, Stijlemans B, Muyldermans S, et al. Molecular imaging with Kupffer cell-targeting nanobodies for diagnosis and prognosis in mouse models of liver pathogenesis. Mol Imaging Biol. 2017;19:49–58.

    Article  CAS  PubMed  Google Scholar 

  116. Zheng F, Put S, Bouwens L, Lahoutte T, Matthys P, Muyldermans S, et al. Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J Nucl Med. 2014;55:824–9.

    Article  CAS  PubMed  Google Scholar 

  117. Xavier C, Vaneycken I, D’huyvetter M, Heemskerk J, Keyaerts M, Vincke C, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776–84.

  118. Xavier C, Blykers A, Vaneycken I, D’Huyvetter M, Heemskerk J, Lahoutte T, et al. 18F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol. 2016;43:247–52.

    Article  CAS  PubMed  Google Scholar 

  119. Balhuizen A, Massa S, Mathijs I, Turatsinze JV, De Vos J, Demine S, et al. A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Sci Rep. 2017;7:1–13.

    Article  CAS  Google Scholar 

  120. Gainkam LOT, Huang L, Caveliers V, Keyaerts M, Hernot S, Vaneycken I, et al. Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med. 2008;49:788–95.

    Article  CAS  PubMed  Google Scholar 

  121. Broos K, Keyaerts M, Lecocq Q, Renmans D, Nguyen T, Escors D, et al. Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget. 2017;8:41932–46.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Broos K, Lecocq Q, Xavier C, Bridoux J, Nguyen TT, Corthals J, et al. Evaluating a single domain antibody targeting human PD-L1 as a nuclear imaging and therapeutic agent. Cancers (Basel). 2019;11:872.

    Article  CAS  PubMed Central  Google Scholar 

  123. Lecocq Q, Zeven K, De Vlaeminck Y, Martens S, Massa S, Goyvaerts C, et al. Noninvasive imaging of the immune checkpoint LAG-3 using nanobodies, from development to pre-clinical use. Biomolecules. 2019;9:548.

    Article  PubMed Central  Google Scholar 

  124. Lemaire M, D’Huyvetter M, Lahoutte T, Van Valckenborgh E, Menu E, De Bruyne E, et al. Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic nanobodies. Leukemia. 2014;28:444–7.

    Article  CAS  PubMed  Google Scholar 

  125. Chatalic KLS, Veldhoven-Zweistra J, Bolkestein M, Hoeben S, Koning GA, Boerman OC, et al. A novel 111In-labeled anti-prostate-specific membrane antigen nanobody for targeted SPECT/CT imaging of prostate cancer. J Nucl Med. 2015;56:1094–9.

    Article  CAS  PubMed  Google Scholar 

  126. Evazalipour M, D’Huyvetter M, Tehrani BS, Abolhassani M, Omidfar K, Abdoli S, et al. Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media Mol Imaging. 2014;9:211–20.

    Article  CAS  PubMed  Google Scholar 

  127. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72:4165–77.

    Article  CAS  PubMed  Google Scholar 

  128. Put S, Schoonooghe S, Devoogdt N, Schurgers E, Avau A, Mitera T, et al. SPECT imaging of joint inflammation with nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med. 2013;54:807–14.

    Article  CAS  PubMed  Google Scholar 

  129. Vandesquille M, Li T, Po C, Ganneau C, Lenormand P, Dudeffant C, et al. Chemically-defined camelid antibody bioconjugate for the magnetic resonance imaging of Alzheimer’s disease. MAbs. 2017;9:1016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Bruijn HS, Mashayekhi V, Schreurs TJL, van Driel PBAA, Strijkers GJ, van Diest PJ, et al. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging. Theranostics. 2020;10:2436–52.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Prantner AM, Yin C, Kamat K, Sharma K, Lowenthal AC, Madrid PB, et al. Molecular imaging of mesothelin-expressing ovarian cancer with a human and mouse cross-reactive nanobody. Mol Pharm. 2018;15:1403–11.

    Article  CAS  PubMed  Google Scholar 

  132. Zaman MB, Baral TN, Jakubek ZJ, Zhang J, Wu X, Lai E, et al. Single-domain antibody bioconjugated near-IR quantum dots for targeted cellular imaging of pancreatic cancer. J Nanosci Nanotechnol. 2011;11:3757–63.

    Article  CAS  PubMed  Google Scholar 

  133. Van Driel PBAA, Van Der Vorst JR, Verbeek FPR, Oliveira S, Snoeks TJA, Keereweer S, et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int J Cancer. 2014;134:2663–73.

    Article  CAS  PubMed  Google Scholar 

  134. Fumey W, Koenigsdorf J, Kunick V, Menzel S, Schütze K, Unger M, et al. Nanobodies effectively modulate the enzymatic activity of CD38 and allow specific imaging of CD38+ tumors in mouse models in vivo. Sci Rep. 2017;7:1–13.

    Article  CAS  Google Scholar 

  135. Fatehi D, Baral TN, Abulrob A. In vivo imaging of brain cancer using epidermal growth factor single domain antibody bioconjugated to near-infrared quantum dots. J Nanosci Nanotechnol. 2014;14:5355–62.

    Article  CAS  PubMed  Google Scholar 

  136. Kijanka MM, van Brussel ASA, van der Wall E, Mali WPTM, van Diest PJ, van Bergen en Henegouwen PMP, et al. Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res. 2016;6:14.

  137. Debie P, Vanhoeij M, Poortmans N, Puttemans J, Gillis K, Devoogdt N, et al. Improved debulking of peritoneal tumor implants by near-infrared fluorescent nanobody image guidance in an experimental mouse model. Mol Imaging Biol. 2018;20:361–7.

    Article  PubMed  Google Scholar 

  138. Traenkle B, Rothbauer U. Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol. 2017;8:1–8.

    Article  Google Scholar 

  139. Li T, Bourgeois J, Celli S, Glacial F, Le Sourd A, Mecheri S, et al. Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: application to brain imaging. FASEB J. 2012;26:3969–79.

    Article  CAS  PubMed  Google Scholar 

  140. Dong J-X, Lee Y, Kirmiz M, Palacio S, Dumitras C, Moreno CM, et al. A toolbox of nanobodies developed and validated for use as intrabodies and nanoscale immunolabels in mammalian brain neurons. Elife. 2019;8:1–25.

    Article  Google Scholar 

  141. Helma J, Schmidthals K, Lux V, Nüske S, Scholz AM, Kräusslich H-G, et al. Direct and dynamic detection of HIV-1 in living cells. PLoS One. 2012;7:e50026.

  142. Traenkle B, Emele F, Anton R, Poetz O, Haeussler RS, Maier J, et al. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells. Mol Cell Proteomics. 2015;14:707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Buchfellner A, Yurlova L, Nüske S, Scholz AM, Bogner J, Ruf B, et al. A new nanobody-based biosensor to study endogenous PARP1 in vitro and in live human cells. PLoS One. 2016;11:e0151041.

  144. van Brussel ASA, Adams A, Oliveira S, Dorresteijn B, El Khattabi M, Vermeulen JF, et al. Hypoxia-targeting fluorescent nanobodies for optical molecular imaging of pre-invasive breast cancer. Mol Imaging Biol. 2016;18:535–44.

    Article  PubMed  Google Scholar 

  145. Sukhanova A, Ramos-Gomes F, Alves F, Chames P, Baty D, Nabiev I. Advanced nanotools for imaging of solid tumors and circulating and disseminated cancer cells. Opt Spectrosc. 2018;125:703–7.

    Article  CAS  Google Scholar 

  146. Hafian H, Sukhanova A, Turini M, Chames P, Baty D, Pluot M, et al. Multiphoton imaging of tumor biomarkers with conjugates of single-domain antibodies and quantum dots. Nanomedicine. 2014;10:1701–9.

    Article  CAS  PubMed  Google Scholar 

  147. Pansieri J, Plissonneau M, Stransky-Heilkron N, Dumoulin M, Heinrich-Balard L, Rivory P, et al. Multimodal imaging Gd-nanoparticles functionalized with Pittsburgh compound B or a nanobody for amyloid plaques targeting. Nanomedicine. 2017;12:1675–87.

    Article  CAS  PubMed  Google Scholar 

  148. Nabuurs RJA, Rutgers KS, Welling MM, Metaxas A, de Backer ME, Rotman M, et al. In vivo detection of amyloid-β deposits using heavy chain antibody fragments in a transgenic mouse model for Alzheimer’s disease. PLoS One. 2012;7:e38284.

  149. Gerdes C, Waal N, Offner T, Fornasiero EF, Wender N, Verbarg H, et al. A nanobody-based fluorescent reporter reveals human α-synuclein in the cell cytosol. Nat Commun. 2020;11:2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Li T, Qi S, Unger M, Hou YN, Deng QW, Liu J, et al. Immuno-targeting the multifunctional CD38 using nanobody. Sci Rep. 2016;6:27055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schornack S, Fuchs R, Huitema E, Rothbauer U, Lipka V, Kamoun S. Protein mislocalization in plant cells using a GFP-binding chromobody. Plant J. 2009;60:744–54.

    Article  CAS  PubMed  Google Scholar 

  152. Hernot S, Unnikrishnan S, Du Z, Shevchenko T, Cosyns B, Broisat A, et al. Nanobody-coupled microbubbles as novel molecular tracer. J Control Release. 2012;158:346–53.

    Article  CAS  PubMed  Google Scholar 

  153. Yu Z, Hu M, Li Z, Dan Xu, Zhu L, Guo Y, et al. Anti-G250 nanobody-functionalized nanobubbles targeting renal cell carcinoma cells for ultrasound molecular imaging. Nanotechnology. 2020;31:205101.

  154. Zhu M, Li M, Li G, Zhou Z, Liu H, Lei H, et al. Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline. Microchim Acta. 2015;182:2451–9.

    Article  CAS  Google Scholar 

  155. Lesne J, Chang H-J, De Visch A, Paloni M, Barthe P, Guichou J-F, et al. Structural basis for chemically-induced homodimerization of a single domain antibody. Sci Rep. 2019;9:1840.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Amy Grabner for providing the English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soraya dos Santos Pereira.

Ethics declarations

Funding

The authors express their gratitude to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de Rondônia (FAPERO), and Fundação Oswaldo Cruz (Fiocruz) for their financial support.

Conflicts of interest

Nairo Brilhante-Silva, Rosa Maria de Oliveira Sousa, Andrelisse Arruda, Eliza Lima dos Santos, Anna Carolina Machado Marinho, Rodrigo Guerino Stabeli, Carla Freire Celedonio Fernandes, and Soraya dos Santos Pereira have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author contribution

NBdS: conceptualization, data curation, writing-original draft. RMdOS: investigation, data curation, writing-review & editing. AA: formal analysis, writing-original draft, data curation, methodology. ELdS: Data curation, investigation, visualization. ACMM: writing-original draft, investigation. RGS: formal analysis, writing-review & editing. CFCF: formal analysis, data curation, writing-review & editing. SdSP: conceptualization, formal analysis, data curation, writing-original draft, supervision.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brilhante-da-Silva, N., de Oliveira Sousa, R.M., Arruda, A. et al. Camelid Single-Domain Antibodies for the Development of Potent Diagnosis Platforms. Mol Diagn Ther 25, 439–456 (2021). https://doi.org/10.1007/s40291-021-00533-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-021-00533-7

Navigation