Skip to main content

Advertisement

Log in

Correlation Between Epidermal Growth Factor Receptor-Specific Nanobody Uptake and Tumor Burden: A Tool for Noninvasive Monitoring of Tumor Response to Therapy

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Nanobodies represent an interesting class of probes for the generic development of molecular imaging agents. We studied the relationship between tumor uptake of the epidermal growth factor receptor (EGFR)-specific nanobody 99mTc-7C12 and tumor burden and evaluated the possibility of using this probe to monitor tumor response to erlotinib.

Procedures

The specificity and affinity of 99mTc-7C12 was determined on A431 cells. Cells expressing firefly luciferase were used to evaluate tumor burden using bioluminescence imaging. We evaluated the effect of erlotinib on tumor burden and 99mTc-7C12 uptake in vitro as well as in vivo. In vivo bioluminescence imaging was performed followed by pinhole single-photon emission computed tomography/micro-computed tomography.

Results

99mTc-7C12 binds specifically to the receptor with high affinity (3.67 ± 0.59 nM). Erlotinib reduced tumor uptake and cell viability in a concentration-dependent manner. Tumor uptake of 99mTc-7C12 showed good correlation with tumor burden. Erlotinib treatment resulted in a progressive reduction of tumor burden and tumor uptake of 99mTc-7C12.

Conclusion

99mTc-7C12 binds to EGFR with high affinity and specificity. Tumor uptake is correlated with tumor burden. Quantification of 99mTc-7C12 uptake is promising for monitoring therapy response of EGFR-expressing tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137

    Article  PubMed  CAS  Google Scholar 

  2. Rocha-Lima CM, Soares HP, Raez LE, Singal R (2007) EGFR targeting of solid tumors. Cancer Control 14(3):295–304

    PubMed  Google Scholar 

  3. Marshall J (2006) Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer 107(6):1207–1218

    Article  PubMed  CAS  Google Scholar 

  4. Fan Z, Masui H, Altas I, Mendelsohn J (1993) Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res 53:4322–4432

    PubMed  CAS  Google Scholar 

  5. Kimura H, Sakai K, Arao T, Shimoyama T, Tamura T, Nishio K (2007) Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor. Cancer Sci 98(8):1275–1280

    Article  PubMed  CAS  Google Scholar 

  6. Paez JG, Jänne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500

    Article  PubMed  CAS  Google Scholar 

  7. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139

    Article  PubMed  CAS  Google Scholar 

  8. Pao W, Miller V, Zakowski M et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101(36):13306–13311

    Article  PubMed  CAS  Google Scholar 

  9. Mancl EE, Kolesar JM, Vermeulen LC (2009) Clinical and economic value of screening for Kras mutations as predictors of response to epidermal growth factor receptor inhibitors. Am J Health Syst Pharm 66(23):2105–2112

    Article  PubMed  Google Scholar 

  10. Pao W, Wang TY, Riely GJ et al (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2(1):e17

    Article  PubMed  Google Scholar 

  11. Cai W, Chen K, He L, Cao Q, Koong A, Chen X (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34(6):850–858

    Article  PubMed  CAS  Google Scholar 

  12. Eiblmaier M, Meyer LA, Watson MA et al (2008) Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J Nucl Med 49(9):1472–1479

    Article  PubMed  CAS  Google Scholar 

  13. Xu N, Cai G, Ye W et al (2009) Molecular imaging application of radioiodinated anti-EGFR human Fab to EGFR-overexpressing tumor xenografts. Anticancer Res 29(10):4005–4011

    PubMed  CAS  Google Scholar 

  14. Velikyan I, Sundberg AL, Lindhe O et al (2005) Preparation and evaluation of (68)Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J Nucl Med 46(11):1881–1888

    PubMed  CAS  Google Scholar 

  15. Reilly RM, Kiarash R, Sandhu J et al (2000) A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 41(5):903–911

    PubMed  CAS  Google Scholar 

  16. Huang L, Gainkam LO, Caveliers V et al (2008) SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol 10(3):167–175

    Article  PubMed  Google Scholar 

  17. Gainkam LO, Huang L, Caveliers V et al (2008) Comparison of the biodistribution and tumor targeting of two 99mTc-labeled anti-EGFR nanobodies in mice, using pinhole SPECT/micro-CT. J Nucl Med 49(5):788–795

    Article  PubMed  CAS  Google Scholar 

  18. Lauwereys M, Arbabi Ghahroudi M et al (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17(13):3512–3520

    Article  PubMed  CAS  Google Scholar 

  19. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284(5):3273–3284

    Article  PubMed  CAS  Google Scholar 

  20. Roovers RC, Laeremans T, Huang L et al (2007) Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR nanobodies. Cancer Immunol Immunother 56(3):303–317

    Article  PubMed  CAS  Google Scholar 

  21. Vanhove C, Defrise M, Bossuyt A, Lahoutte T (2009) Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information. Eur J Nucl Med Mol Imaging 36(7):1049–1063

    Article  PubMed  Google Scholar 

  22. Vanhove C, Defrise M, Lahoutte T, Bossuyt A (2008) Three-pinhole collimator to improve axial spatial resolution and sensitivity in pinhole SPECT. Eur J Nucl Med Mol Imaging 35(2):407–415

    Article  PubMed  Google Scholar 

  23. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2(3):131–137

    Article  PubMed  Google Scholar 

  24. Keyaerts M, Verschueren J, Bos TJ et al (2008) Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission. Eur J Nucl Med Mol Imaging 35(5):999–1007

    Article  PubMed  CAS  Google Scholar 

  25. O'Connor JP, Jackson A, Asselin MC, Buckley DL, Parker GJ, Jayson GC (2008) Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol 9:766–776

    Article  PubMed  Google Scholar 

  26. Sunaga N, Oriuchi N, Kaira K et al (2008) Usefulness of FDG-PET for early prediction of the response to gefitinib in non-small cell lung cancer. Lung Cancer 59(2):203–210

    Article  PubMed  Google Scholar 

  27. de Geus-Oei LF, Vriens D, van Laarhoven HW, van der Graaf WT, Oyen WJ (2009) Monitoring and predicting response to therapy with 18F-FDG PET in colorectal cancer: a systematic review. J Nucl Med 50(Suppl 1):43S–54S

    Article  PubMed  Google Scholar 

  28. Kubota K, Ito K, Morooka M et al (2009) Whole-body FDG-PET/CT on rheumatoid arthritis of large joints. Ann Nucl Med 23(9):783–791, Epub 2009 Oct 16

    Article  PubMed  Google Scholar 

  29. Nordberg E, Orlova A, Friedman M et al (2008) In vivo and in vitro uptake of 111In, delivered with the affibody molecule (ZEGFR:955)2, in EGFR expressing tumour cells. Oncol Rep 19(4):853–7.30

    PubMed  CAS  Google Scholar 

  30. Tolmachev V, Friedman M, Sandström M et al (2009) Affibody molecules for epidermal growth factor receptor targeting in vivo: aspects of dimerization and labeling chemistry. J Nucl Med 50(2):274–283

    Article  PubMed  Google Scholar 

  31. Pal A, Glekas A, Doubrovin M et al (2006) Molecular imaging of EGFR kinase activity in tumors with 124I-labeled small molecular tracer and positron emission tomography. Mol Imaging Biol 8(5):262–277

    Article  PubMed  CAS  Google Scholar 

  32. Abourbeh G, Dissoki S, Jacobson O et al (2007) Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors. Nucl Med Biol 34(1):55–70

    Article  PubMed  CAS  Google Scholar 

  33. De Groeve K, Deschacht N, De Koninck C et al (2010) Nanobodies as tools for in vivo imaging of specific immune cell types. J Nucl Med 51(5):782–789

    Article  PubMed  Google Scholar 

  34. Vaneycken I, Govaert J, Vincke C et al (2010) In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT. J Nucl Med 51(7):1099–1106

    Article  PubMed  CAS  Google Scholar 

  35. van Eerd JE, Vegt E, Wetzels JF et al (2006) Gelatin-based plasma expander effectively reduces renal uptake of 111In-octreotide in mice and rats. J Nucl Med 47(3):528–533

    PubMed  Google Scholar 

  36. Vegt E, Wetzels JF, Russel FG et al (2006) Renal uptake of radiolabeled octreotide in human subjects is efficiently inhibited by succinylated gelatin. J Nucl Med 47(3):432–436

    PubMed  CAS  Google Scholar 

  37. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7(4):301–311

    Article  PubMed  CAS  Google Scholar 

  38. Nogawa M, Yuasa T, Kimura S et al (2005) Monitoring luciferase-labeled cancer cell growth and metastasis in different in vivo models. Cancer Lett 217(2):243–253

    Article  PubMed  CAS  Google Scholar 

  39. Craft N, Bruhn KW, Nguyen BD et al (2005) Bioluminescent imaging of melanoma in live mice. J Invest Dermatol 125(1):159–165

    Article  PubMed  CAS  Google Scholar 

  40. Ling YH, Lin R, Perez-Soler R (2008) Erlotinib induces mitochondrial-mediated apoptosis in human H3255 non-small-cell lung cancer cells with epidermal growth factor receptor L858R mutation through mitochondrial oxidative phosphorylation-dependent activation of BAX and BAK. Mol Pharmacol 74(3):793–806

    Article  PubMed  CAS  Google Scholar 

  41. Qian X, Li J, Ding J, Wang Z, Zhang W, Hu G (2009) Erlotinib activates mitochondrial death pathways related to the production of reactive oxygen species in the human non-small cell lung cancer cell line A549. Clin Exp Pharmacol Physiol 36(5-6):487–494

    Article  PubMed  CAS  Google Scholar 

  42. Li T, Ling YH, Perez-Soler R (2008) Tumor dependence on the EGFR signaling pathway expressed by the p-EGFR:p-AKT ratio predicts erlotinib sensitivity in human non-small cell lung cancer (NSCLC) cells expressing wild-type EGFR gene. J Thorac Oncol 3(6):643–647

    Article  PubMed  Google Scholar 

  43. Atkinson DM, Clarke MJ, Mladek AC, Carlson BL, Trump DP, Jacobson MS, Kemp BJ, Lowe VJ, Sarkaria JN (2008) Using fluorodeoxythymidine to monitor anti-EGFR inhibitor therapy in squamous cell carcinoma xenografts. Head Neck 30(6):790–799

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research at ICMI is funded by the Interuniversity Attraction Poles Programme—Belgian State—Belgian Science Policy. Lea Olive Tchouate Gainkam is a Ph.D. fellow of the Horizontal Research Axis (HOA) grant of the Vrije Universiteit Brussel. Tony Lahoutte is a Senior Clinical Investigator of the Research Foundation—Flanders (FWO). Marleen Keyaerts is a Ph.D. fellow of the Research Foundation—Flanders (FWO). The authors acknowledge Ms. Cindy Peleman for her technical assistance with the small animal pinhole SPECT/micro-CT imaging. The authors are grateful to Lieven Huang for producing the nanobody.

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea Olive Tchouate Gainkam.

Additional information

Manuscript Category and Significance:

Original article that investigates the relationship between tumor burden and uptake of radiolabeled 7C12 nanobody in response to an EGFR tyrosine kinase inhibitor. The preclinical data presented here strongly suggest that it will be feasible to monitor tumor response to therapy in clinical trial using this molecular imaging probe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchouate Gainkam, L.O., Keyaerts, M., Caveliers, V. et al. Correlation Between Epidermal Growth Factor Receptor-Specific Nanobody Uptake and Tumor Burden: A Tool for Noninvasive Monitoring of Tumor Response to Therapy. Mol Imaging Biol 13, 940–948 (2011). https://doi.org/10.1007/s11307-010-0428-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0428-4

Key Words

Navigation