Skip to main content

Advertisement

Log in

SPECT Imaging with 99mTc-Labeled EGFR-Specific Nanobody for In Vivo Monitoring of EGFR Expression

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Overexpression of the epidermal growth factor receptor (EGFR) occurs with high incidence in various carcinomas. The oncogenic expression of the receptor has been exploited for immunoglobulin-based diagnostics and therapeutics. We describe the use of a llama single-domain antibody fragment, termed Nanobody®, for the in vivo radioimmunodetection of EGFR overexpressing tumors using single photon emission computed tomography (SPECT) in mice.

Methods

Fluorescence-activated cell sorting (FACS) analysis was performed to evaluate the specificity and selectivity of 8B6 Nanobody to bind EGFR on EGFR overexpressing cells. The Nanobody was then labeled with 99mTc via its C-terminal histidine tail. Uptake in normal organs and tissues was assessed by ex vivo analysis. In vivo tumor targeting of 99mTc-8B6 Nanobody was evaluated via pinhole SPECT in mice bearing xenografts of tumor cells with either high (A431) or moderate (DU145) overexpression of EGFR.

Results

FACS analysis indicated that the 8B6 Nanobody only recognizes cells overexpressing EGFR. In vivo blood clearance of 99mTc-8B6 Nanobody is relatively fast (half-life, 1.5 h) and mainly via the kidneys. At 3 h postinjection, total kidney accumulation is high (46.6 ± 0.9%IA) compared to total liver uptake (18.9 ± 0.6%IA). Pinhole SPECT imaging of mice bearing A431 xenografts showed higher average tumor uptake (5.2 ± 0.5%IA/cm3) of 99mTc-8B6 Nanobody compared to DU145 xenografts (1.8 ± 0.3%IA/cm3, p < 0.001).

Conclusion

The EGFR-binding Nanobody investigated in this study shows high specificity and selectivity towards EGFR overexpressing cells. Pinhole SPECT analysis with 99mTc-8B6 Nanobody enabled in vivo discrimination between tumors with high and moderate EGFR overexpression. The favorable biodistribution further corroborates the suitability of Nanobodies for in vivo tumor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beekman F, Van der Have F (2006) The pinhole: gateway to ultra-high-resolution three-dimensional radionuclide imaging. Eur J Nucl Med Mol Imaging 34:151–161

    Article  Google Scholar 

  2. Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  PubMed  CAS  Google Scholar 

  3. Van de Wiele C, Revets H, Mertens N (2004) Radioimmunoimaging. Advances and prospects. Q J Nucl Med Mol Imaging 48:317–325

    PubMed  Google Scholar 

  4. Kenanova V, Wu AM (2006) Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv 3:53–70

    Article  PubMed  CAS  Google Scholar 

  5. Mallender WD, Carrero J, Voss EWJ (1996) Comparative properties of the single chain antibody and Fv derivatives of mAb 4–4–20. Relationship between interdomain interactions and the high affinity for fluorescein ligand. J Biol Chem 271:5338–5346

    Article  PubMed  CAS  Google Scholar 

  6. Whitlow M, Bell BA, Feng SL, et al. (1993) An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability. Protein Eng 6:989–995

    Article  PubMed  CAS  Google Scholar 

  7. Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  PubMed  CAS  Google Scholar 

  8. Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in Camelidae. Adv Immunol 79:261–296

    Article  PubMed  CAS  Google Scholar 

  9. Huang L, Reekmans G, Saerens D, et al. (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens Bioelectron 21:483–490

    Article  PubMed  CAS  Google Scholar 

  10. Revets H, De Baetselier P, Muyldermans S (2005) Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther 5:111–124

    Article  PubMed  CAS  Google Scholar 

  11. Davies J, Riechmann L (1996) Single antibody domains as small recognition units: design and in vitro antigen selection of camelized, human VH domains with improved protein stability. Protein Eng 9:531–537

    Article  PubMed  CAS  Google Scholar 

  12. Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  PubMed  CAS  Google Scholar 

  13. Frenken LG, van der Linden RH, Hermans PW, et al. (2000) Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78:11–21

    Article  PubMed  CAS  Google Scholar 

  14. Joosten V, Gouka RJ, van den Hondel CA, Verrips CT, Lokman BC (2005) Expression and production of llama variable heavy-chain antibody fragments (VHHs) by Aspergillus awamori. Appl Microbiol Biotechnol 66:384–392

    Article  PubMed  CAS  Google Scholar 

  15. Ismaili A, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Memari HR (2007) Production and characterization of anti-(mucin MUC1) single-domain antibody in tobacco (Nicotiana tabacum cultivar Xanthi). Biotechnol Appl Biochem 47:11–19

    Article  PubMed  CAS  Google Scholar 

  16. Abulrob A, Sprong H, en Henegouwen PVB, Stanimirovic D (2005) The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem 95:1201–1214

    Article  PubMed  CAS  Google Scholar 

  17. Cortez-Retamozo V, Lauwereys M, Gholamreza Hassanzadeh G, et al. (2002) Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer 98:456–462

    Article  PubMed  CAS  Google Scholar 

  18. Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V(H)H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–930

    Article  PubMed  CAS  Google Scholar 

  19. Roovers RC, Laeremans T, Huang L, et al. (2006) Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunol Immunother 56:303–317

    Article  CAS  Google Scholar 

  20. Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 18:1007–1021

    Article  PubMed  Google Scholar 

  21. Grandis JR, Sok JC (2004) Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 102:37–46

    Article  PubMed  CAS  Google Scholar 

  22. Kim H, Muller WJ (1999) The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp Cell Res 253:78–87

    Article  PubMed  CAS  Google Scholar 

  23. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37:S9–S15

    Article  PubMed  CAS  Google Scholar 

  24. Haigler H, Ash JF, Singer SJ, Cohen S (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A 75:3317–3321

    Article  PubMed  CAS  Google Scholar 

  25. MacDonald A, Chisholm GD, Habib FK (1990) Production and response of a human prostatic cancer line to transforming growth factor-like molecules. Br J Cancer 62:579–584

    PubMed  CAS  Google Scholar 

  26. Honegger AM, Dull TJ, Felder S, et al. (1987) Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing. Cell 51:199–209

    Article  PubMed  CAS  Google Scholar 

  27. Honegger AM, Schmidt A, Ullrich A, Schlessinger J (1990) Evidence for epidermal growth factor (EGF)-induced intermolecular autophosphorylation of the EGF receptors in living cells. Mol Cell Biol 10:4035–4044

    PubMed  CAS  Google Scholar 

  28. Aguilar Z, Akita RW, Finn RS, et al. (1999) Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 18:6050–6062

    Article  PubMed  CAS  Google Scholar 

  29. Desmyter A, Transue TR, Ghahroudi MA, et al. (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nat Struct Biol 3:803–811

    Article  PubMed  CAS  Google Scholar 

  30. Vanhove C, Defrise M, Franken PR, Everaert H, Deconinck F, Bossuyt A (2000) Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 27:140–146

    Article  PubMed  CAS  Google Scholar 

  31. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  32. De Genst E, Silence K, Decanniere K, et al. (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103:4586–4591

    Article  PubMed  CAS  Google Scholar 

  33. Smith JM, Sporn MB, Roberts AB, Derynck R, Winkler ME, Gregory H (1985) Human transforming growth factor-alpha causes precocious eyelid opening in newborn mice. Nature 315:515–516

    Article  PubMed  CAS  Google Scholar 

  34. Sundberg AL, Gedda L, Orlova A, et al. (2004) [177Lu]Bz-DTPA-EGF: Preclinical characterization of a potential radionuclide targeting agent against glioma. Cancer Biother Radiopharm 19:195–204

    Article  PubMed  CAS  Google Scholar 

  35. Tolmachev V, Orlova A, Wei Q, Bruskin A, Carlsson J, Gedda L (2004) Comparative biodistribution of potential anti-glioblastoma conjugates [111In]DTPA-hEGF and [111In]Bz-DTPA-hEGF in normal mice. Cancer Biother Radiopharm 19:491–501

    PubMed  CAS  Google Scholar 

  36. Behr TM, Behe M, Becker W (1999) Diagnostic applications of radiolabeled peptides in nuclear endocrinology. Q J Nucl Med 43:268–280

    PubMed  CAS  Google Scholar 

  37. Decristoforo C, Mather SJ (2002) The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med 46:195–205

    PubMed  CAS  Google Scholar 

  38. Ballinger JR, Cooper MS, Mather SJ (2004) Re: controversies–[Tc(CO)3] chemistry: a promising new concept for SPET? Eur J Nucl Med Mol Imaging 31:304–305

    Article  PubMed  Google Scholar 

  39. Orlova A, Magnusson M, Eriksson TLJ, et al. (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348

    Article  PubMed  CAS  Google Scholar 

  40. Cai W, Chen K, He L, Cao Q, Koong A, Chen X (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using (64)Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858

    Article  PubMed  CAS  Google Scholar 

  41. Senekowitsch-Schmidtke R, Steiner K, Haunschild J, Mollenstadt S, Truckenbrodt R (1996) In vivo evaluation of epidermal growth factor (EGF) receptor density on human tumor xenografts using radiolabeled EGF and anti-(EGF receptor) mAb 425. Cancer Immunol Immunother 42:108–114

    Article  PubMed  CAS  Google Scholar 

  42. Reilly RM, Kiarash R, Sandhu J, et al. (2000) A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. J Nucl Med 41:903–911

    PubMed  CAS  Google Scholar 

  43. Meenakshi A, Ganesh V, Suresh Kumar R, Siva Kumar N (2003) Radioimmuno targetting (99 m)technetium labeled anti-epidermal growth factor receptor monoclonal antibodies in experimental tumor models. Q J Nucl Med 47:139–144

    PubMed  CAS  Google Scholar 

  44. Schechter NR, Yang DJ, Azhdarinia A, et al. (2003) Assessment of epidermal growth factor receptor with 99mTc-ethylenedicysteine-C225 monoclonal antibody. Anticancer Drugs 14:49–56

    Article  PubMed  CAS  Google Scholar 

  45. Pnwar P, Iznaga-Escobar N, Mishra P, et al. (2005) Radiolabeling and biological evaluation of DOTA-Ph-Al derivative conjugated to anti-EGFR antibody ior egf/r3 for targeted tumor imaging and therapy. Cancer Biol Ther 4:854–860

    Article  PubMed  Google Scholar 

  46. Torres LA, Perera A, Batista JF, et al. (2005) Phase I/II clinical trial of the humanized anti-EGF-r monoclonal antibody h-R3 labeled with 99mTc in patients with tumour of epithelial origin. Nucl Med Commun 26:1049–1057

    Article  PubMed  CAS  Google Scholar 

  47. Goldenberg A, Masui H, Divgi C, Kamrath H, Pentlow K, Mendelsohn J (1989) Imaging of human tumor xenografts with an indium-111-labeled anti-epidermal growth factor receptor monoclonal antibody. J Natl Cancer Inst 81:1616–1625

    Article  PubMed  CAS  Google Scholar 

  48. Steiner K, Haunschild J, Faro HP, Senekowitsch R (1995) Distribution of humanized MAb 425 (EMD 62,000) in rats and specific localization in tumor-bearing nude mice. Cell Mol Biol (Noisy-le-grand) 41:179–184

    CAS  Google Scholar 

  49. Scopinaro F, De Vincentis G, Banci M, et al. (1997) In vivo study of a technetium labeled anti-EGFr MoAB. Anticancer Res 17:1761–1765

    PubMed  CAS  Google Scholar 

  50. Morales-Morales A, Duconge J, Caballero-Torres I, Nunez-Gandolff G, Fernandez E, Iznaga-Escobar N (1999) Biodistribution of 99mTc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma. Nucl Med Biol 26:275–279

    Article  PubMed  CAS  Google Scholar 

  51. Schillaci O, Danieli R, Picardi V, Bagni O, Di Loreto M, Scopinaro F (2001) Immunoscintigraphy with a technetium-99m labeled anti-epithelial growth factor receptor antibody in patients with non-small cell lung cancer. Anticancer Res 21:3571–3574

    PubMed  CAS  Google Scholar 

  52. Panousis C, Rayzman VM, Johns TG, et al. (2005) Engineering and characterisation of chimeric monoclonal antibody 806 (ch806) for targeted immunotherapy of tumors expressing de2–7 EGFR or amplified EGFR. Br J Cancer 92:1069–1077

    Article  PubMed  CAS  Google Scholar 

  53. Perk LR, Visser GWM, Vosjan MJWD, et al. (2005) (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 46:1898–1906

    PubMed  CAS  Google Scholar 

  54. Rusckowski M, Qu T, Chang F, Hnatowich DJ (1997) Technetium-99m labeled epidermal growth factor-tumor imaging in mice. J Pept Res 50:393–401

    Article  PubMed  CAS  Google Scholar 

  55. Reilly RM, Kiarash R, Cameron RG, et al. (2000) 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 41:429–438

    PubMed  CAS  Google Scholar 

  56. Abourbeh G, Dissoki S, Jacobson O, et al. (2007) Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors. Nucl Med Biol 34:55–70

    Article  PubMed  CAS  Google Scholar 

  57. Friedman M, Nordberg E, Höidén-Guthenberg I, et al. (2007) Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor. Protein Eng Des Sel 20:189–199

    Article  PubMed  CAS  Google Scholar 

  58. Tolmachev V, Orlova A, Nilsson FY, Feldwisch J, Wennborg A, Abrahmsen L (2007) Affibody molecules: potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin Biol Ther 7:555–568

    Article  PubMed  CAS  Google Scholar 

  59. Lundberg E, Hoiden-Guthenberg I, Larsson B, Uhlen M, Graslund T (2007) Site-specifically conjugated anti-HER2 Affibody molecules as one-step reagents for target expression analyses on cells and xenograft samples. J Immunol Methods 319:53–63

    Article  PubMed  CAS  Google Scholar 

  60. Orlova A, Tolmachev V, Pehrson R, et al. (2007) Synthetic affibody molecules: a novel class of affinity ligands for molecular imaging of HER2-expressing malignant tumors. Cancer Res 67:2178–2186

    Article  PubMed  CAS  Google Scholar 

  61. Steffen A-C, Orlova A, Wikman M, et al. (2006) Affibody-mediated tumour targeting of HER-2 expressing xenografts in mice. Eur J Nucl Med Mol Imaging 33:631–638

    Article  PubMed  CAS  Google Scholar 

  62. Britten CD (2004) Targeting ErbB receptor signaling: a pan-ErbB approach to cancer. Mol Cancer Ther 3:1335–1342

    PubMed  CAS  Google Scholar 

  63. Cunningham D, Humblet Y, Siena S, et al. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  PubMed  CAS  Google Scholar 

  64. Vincenzi B, Santini D, Rabitti C, et al. (2006) Cetuximab and irinotecan as third-line therapy in advanced colorectal cancer patients: a single centre phase II trial. Br J Cancer 94:792–797

    Article  PubMed  CAS  Google Scholar 

  65. Chung KY, Shia J, Kemeny NE, et al. (2005) Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23:1803–1810

    Article  PubMed  CAS  Google Scholar 

  66. Dei Tos AP, Ellis I (2005) Assessing epidermal growth factor receptor expression in tumors: what is the value of current test methods? Eur J Cancer 41:1383–1392

    Article  PubMed  CAS  Google Scholar 

  67. Fruehauf J (2006) EGFR function and detection in cancer therapy. J Exp Ther Oncol 5:231–246

    PubMed  CAS  Google Scholar 

  68. Penault-Llorca F, Cayre A, Arnould L, et al. (2006) Is there an immunohistochemical technique definitively valid in epidermal growth factor receptor assessment? Oncol Rep 16:1173–1179

    PubMed  Google Scholar 

  69. Atkins D, Reiffen K-A, Tegtmeier CL, Winther H, Bonato MS, Storkel S (2004) Immunohistochemical detection of EGFR in paraffin-embedded tumor tissues: variation in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem 52:893–901

    Article  PubMed  CAS  Google Scholar 

  70. Hoff J (2000) Methods of blood collection in the mouse. Lab Anim 29:47–53

    Google Scholar 

Download references

Acknowledgments

L.H. is supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). L.O.T.G. is a Ph.D. fellow of the Horizontal Onderzoek Axis (HOA) of the VUB. T.L. is a Senior Clinical Investigator of the Research Foundation–Flanders (Belgium) (FWO). The research at ICMI is funded by the Interuniversity Attraction Poles Programme–Belgian State–Belgian Science Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lieven Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, L., Gainkam, L.O.T., Caveliers, V. et al. SPECT Imaging with 99mTc-Labeled EGFR-Specific Nanobody for In Vivo Monitoring of EGFR Expression. Mol Imaging Biol 10, 167–175 (2008). https://doi.org/10.1007/s11307-008-0133-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0133-8

Key words

Navigation