Skip to main content
Log in

Pharmacological Management of Apathy in Dementia

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Apathy is a highly prevalent symptom of dementia. Despite its association with faster cognitive and functional decline, decreased quality of life and increased mortality, no therapies are currently approved to treat apathy. The objective of this review was to summarize the drugs that have been studied for apathy treatment in patients with dementia (specifically Alzheimer’s disease [AD], Huntington’s disease [HD] and Parkinson’s disease [PD] dementia; dementia with Lewy bodies [DLB]; vascular dementia [VaD]; and frontotemporal dementia [FTD]) based on their putative mechanisms of action. A search for relevant studies was performed using ClinicalTrials.gov and PubMed. Eligible studies were randomized controlled trials that were available in English and included at least one drug intervention and an apathy measure scale. A total of 52 studies that included patients with AD (n = 33 studies), PD (n = 5), HD (n = 1), DLB (n = 1), FTD (n = 3), VaD (n = 1), VaD and AD (n = 4), VaD and mixed dementia (n = 1), and AD, VaD and mixed dementia (n = 3) were eligible for inclusion. These studies showed that methylphenidate, olanzapine, cholinesterase inhibitors, choline alphoscerate, citalopram, memantine, and mibampator are the only beneficial drugs in AD-related apathy. For PD-related apathy, only methylphenidate, rotigotine and rivastigmine showed benefits. Regarding FTD- and DLB-related apathy, initial studies with agomelatine and rivastigmine showed benefits, respectively. As for HD- and only-VaD-related apathy, no drugs demonstrated benefits. With regards to mixed populations, memantine, galantamine and gingko biloba showed effects on apathy in the AD plus VaD populations and nimodipine in the VaD plus mixed dementia populations. Of the drugs with positive results, some are already prescribed to patients with dementia to target other symptoms, some have characteristics—such as medical contraindications (e.g., cardiovascular) and adverse effects (e.g., gastrointestinal disturbances)—that limit their clinical use and some require further study. Future studies should investigate apathy as a primary outcome, making use of appropriate sample sizes and study durations to ensure durability of results. There should also be a consensus on using scales with high test/retest and interrater reliabilities to limit the inconsistencies between clinical trials. In conclusion, there are currently no US FDA-approved drugs that target apathy in dementia, so there is an ongoing need for the development of such drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang F, Patel T, Schulz ME. The “Rising Tide” of dementia in Canada: what does it mean for pharmacists and the people they care for? Can Pharm J (Ott). 2015;148(4):193–9.

    Article  PubMed Central  Google Scholar 

  2. Prince M, Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina M. World Alzheimer Report 2015. The global impact of dementia. An analysis of prevalence, incidence, cost and trends. 2015.

  3. Duong S, Patel T, Chang F. Dementia: what pharmacists need to know. Can Pharm J (Ott). 2017;150(2):118–29.

    Article  PubMed Central  Google Scholar 

  4. Cerejeira J, Lagarto L, Mukaetova-Ladinska EB. Behavioral and psychological symptoms of dementia. Front Neurol. 2012;3:73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marin RS. Apathy: a neuropsychiatric syndrome. J Neuropsychiatry Clin Neurosci. 1991;3(3):243–54.

    Article  CAS  PubMed  Google Scholar 

  6. Starkstein SE, Jorge R, Mizrahi R, Robinson RG. A prospective longitudinal study of apathy in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2006;77(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Devanand DP, Brockington CD, Moody BJ, Brown RP, Mayeux R, Endicott J, et al. Behavioral syndromes in Alzheimer’s disease. Int Psychogeriatr. 1992;4(4):161–84.

    Article  PubMed  Google Scholar 

  8. Gonzales-Salvador T, Lyketsos C, Baker A, Roques C, Hovanek L, Steele C, et al. Quality of life of patients with dementia in long-term care. Int J Geriatr Psychiatry. 2000;15(2):181–9.

    Article  Google Scholar 

  9. Nijsten JMH, Leontjevas R, Pat-El R, Smalbrugge M, Koopmans R, Gerritsen DL. Apathy: risk factor for mortality in nursing home patients. J Am Geriatr Soc. 2017;65(10):2182–9.

    Article  PubMed  Google Scholar 

  10. Akyol MA, Küçükgüçlü Ö, Yener G. Investigation of factors affecting apathy in three major types of dementia. Noro Psikiyatr Ars. 2019;57(2):120–5.

    PubMed  PubMed Central  Google Scholar 

  11. Breitve MH, Brønnick K, Chwiszczuk LJ, Hynninen MJ, Aarsland D, Rongve A. Apathy is associated with faster global cognitive decline and early nursing home admission in dementia with Lewy bodies. Alzheimers Res Ther. 2018;10(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bonfanti AB, Etcheverry JL, Persi GG, Zezza H, Starkstein S, Gatto EM. Apathy in Parkinson’s disease. Impairment in quality of life. Medicina (B Aires). 2009;69(2):253–8.

    Google Scholar 

  13. Camacho MBR, Mason SL. Apathy in Huntington’s disease: a review of the current conceptualization. J Alzheimers Dis Parkinsonism. 2018;8:431.

    Article  Google Scholar 

  14. Robert P, Lanctôt KL, Agüera-Ortiz L, Aalten P, Bremond F, Defrancesco M, et al. Is it time to revise the diagnostic criteria for apathy in brain disorders? The 2018 international consensus group. Eur Psychiatry. 2018;54:71–6.

    Article  CAS  PubMed  Google Scholar 

  15. Miller DS, Robert P, Ereshefsky L, Adler L, Bateman D, Cummings J, et al. Diagnostic criteria for apathy in neurocognitive disorders. Alzheimers Dement. 2021. https://doi.org/10.1002/alz.12358.

  16. Le Heron C, Apps MAJ, Husain M. The anatomy of apathy: a neurocognitive framework for amotivated behaviour. Neuropsychologia. 2018;118:54–67.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Le Heron C, Holroyd CB, Salamone J, Husain M. Brain mechanisms underlying apathy. J Neurol Neurosurg Psychiatry. 2019;90(3):302–12.

    Article  PubMed  Google Scholar 

  18. Mitchell RA, Herrmann N, Lanctôt KL. The role of dopamine in symptoms and treatment of apathy in Alzheimer’s disease. CNS Neurosci Ther. 2011;17(5):411–27.

    Article  CAS  PubMed  Google Scholar 

  19. Brodaty H, Burns K. Nonpharmacological management of apathy in dementia: a systematic review. Am J Geriatr Psychiatry. 2012;20(7):549–64.

    Article  PubMed  Google Scholar 

  20. Sterne JACSJ, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

    Article  PubMed  Google Scholar 

  21. Juárez Olguín H, Calderón Guzmán D, Hernández García E, Barragán MG. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid Med Cell Longev. 2016;2016:9730467.

    Article  PubMed  Google Scholar 

  22. Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A. Dopamine and dopamine receptors in Alzheimer’s disease: a systematic review and network meta-analysis. Front Aging Neurosci. 2019;11:175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gratwicke J, Jahanshahi M, Foltynie T. Parkinson’s disease dementia: a neural networks perspective. Brain. 2015;138(6):1454–76.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Narayanan NS, Rodnitzky RL, Uc EY. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev Neurosci. 2013;24(3):267–78.

    Article  PubMed  Google Scholar 

  25. Bäckman L, Farde L. Dopamine and cognitive functioning: Brain imaging findings in Huntington’s disease and normal aging. Scand J Psychol. 2001;42(3):287–96.

    Article  PubMed  Google Scholar 

  26. Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain. 2018;141(5):1263–85.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Piggott MA, Marshall EF, Thomas N, Lloyd S, Court JA, Jaros E, et al. Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer’s and Parkinson’s diseases: rostrocaudal distribution. Brain. 1999;122(Pt 8):1449–68.

    Article  PubMed  Google Scholar 

  28. Court JA, Perry EK. Neurotransmitter abnormalities in vascular dementia. Int Psychogeriatr. 2003;15(Suppl 1):81–7.

    Article  PubMed  Google Scholar 

  29. Herrmann N, Rothenburg LS, Black SE, Ryan M, Liu BA, Busto UE, et al. Methylphenidate for the treatment of apathy in Alzheimer disease: prediction of response using dextroamphetamine challenge. J Clin Psychopharmacol. 2008;28(3):296–301.

    Article  CAS  PubMed  Google Scholar 

  30. Padala PR, Padala KP, Lensing SY, Ramirez D, Monga V, Bopp MM, et al. Methylphenidate for apathy in community-dwelling older veterans with mild Alzheimer’s disease: a double-blind, randomized placebo-controlled trial. Am J Psychiatry. 2018;175(2):159–68.

    Article  PubMed  Google Scholar 

  31. Rosenberg PB, Lanctôt KL, Drye LT, Herrmann N, Scherer RW, Bachman DL, et al. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74(8):810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mintzer J, Lanctôt KL, Scherer RW, Rosenberg PB, Herrmann N, van Dyck CH, et al. Effect of methylphenidate on apathy in patients with Alzheimer disease: the ADMET 2 randomized clinical trial. JAMA Neurol. 2021;78(11):1324–1332.

    Article  PubMed  Google Scholar 

  33. Frakey LL, Salloway S, Buelow M, Malloy P. A randomized, double-blind, placebo-controlled trial of modafinil for the treatment of apathy in individuals with mild-to-moderate Alzheimer’s disease. J Clin Psychiatry. 2012;73(6):796–801.

    Article  CAS  PubMed  Google Scholar 

  34. Nave S, Doody RS, Boada M, Grimmer T, Savola J-M, Delmar P, et al. Sembragiline in moderate Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase II Trial (MAyflOwer RoAD). J Alzheimers Dis. 2017;58(4):1217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pollock BG, Mulsant BH, Rosen J, Sweet RA, Mazumdar S, Bharucha A, et al. Comparison of citalopram, perphenazine, and placebo for the acute treatment of psychosis and behavioral disturbances in hospitalized, demented patients. Am J Psychiatry. 2002;159(3):460–5.

    Article  PubMed  Google Scholar 

  36. De Deyn P, Jeste DV, Swanink R, Kostic D, Breder C, Carson WH, et al. Aripiprazole for the treatment of psychosis in patients with Alzheimer’s disease: a randomized, placebo-controlled study. J Clin Psychopharmacol. 2005;25(5):463–7.

    Article  PubMed  Google Scholar 

  37. De Deyn PP, Carrasco MM, Deberdt W, Jeandel C, Hay DP, Feldman PD, et al. Olanzapine versus placebo in the treatment of psychosis with or without associated behavioral disturbances in patients with Alzheimer’s disease. Int J Geriatr Psychiatry. 2004;19(2):115–26.

    Article  PubMed  Google Scholar 

  38. Yanofski J. The dopamine dilemma: using stimulants and antipsychotics concurrently. Psychiatry (Edgmont). 2010;7(6):18–23.

    Google Scholar 

  39. Moreau C, Delval A, Defebvre L, Dujardin K, Duhamel A, Petyt G, et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol. 2012;11(7):589–96.

    Article  CAS  PubMed  Google Scholar 

  40. Hauser RA, Slawek J, Barone P, Dohin E, Surmann E, Asgharnejad M, et al. Evaluation of rotigotine transdermal patch for the treatment of apathy and motor symptoms in Parkinson’s disease. BMC Neurol. 2016;16:90.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Castrioto A, Thobois S, Anheim M, Quesada JL, Lhommée E, Klinger H, et al. A randomized controlled double-blind study of rotigotine on neuropsychiatric symptoms in de novo PD. NPJ Parkinsons Dis. 2020;6(1):41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barone P, Santangelo G, Morgante L, Onofrj M, Meco G, Abbruzzese G, et al. A randomized clinical trial to evaluate the effects of rasagiline on depressive symptoms in non-demented Parkinson’s disease patients. Eur J Neurol. 2015;22(8):1184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scherer RW, Drye L, Mintzer J, Lanctôt K, Rosenberg P, Herrmann N, et al. The Apathy in Dementia Methylphenidate Trial 2 (ADMET 2): study protocol for a randomized controlled trial. Trials. 2018;19(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aripiprazole in the treatment of patients with psychosis associated with dementia of Alzheimer's type. https://ClinicalTrials.gov/show/NCT01438060.

  45. Devos D, Krystkowiak P, Clement F, Dujardin K, Cottencin O, Waucquier N, et al. Improvement of gait by chronic, high doses of methylphenidate in patients with advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(5):470–5.

    Article  CAS  PubMed  Google Scholar 

  46. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mufson EJ, Counts SE, Perez SE, Ginsberg SD. Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother. 2008;8(11):1703–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bohnen NI, Albin RL. The cholinergic system and Parkinson disease. Behav Brain Res. 2011;221(2):564–73.

    Article  CAS  PubMed  Google Scholar 

  49. Müller MLTM, Bohnen NI. Cholinergic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep. 2013;13(9):377.

    Article  PubMed  PubMed Central  Google Scholar 

  50. D’Souza GX, Waldvogel HJ. Targeting the cholinergic system to develop a novel therapy for Huntington’s disease. J Huntington’s Dis. 2016;5:333–42.

    Article  Google Scholar 

  51. Perry EK, Irving D, Kerwin JM, McKeith IG, Thompson P, Collerton D, et al. Cholinergic transmitter and neurotrophic activities in Lewy body dementia: similarity to Parkinson’s and distinction from Alzheimer disease. Alzheimer Dis Assoc Disord. 1993;7(2):69–79.

    Article  CAS  PubMed  Google Scholar 

  52. Herrmann N, Rabheru K, Wang J, Binder C. Galantamine treatment of problematic behavior in Alzheimer disease: post-hoc analysis of pooled data from three large trials. Am J Geriatr Psychiatry. 2005;13(6):527–34.

    Article  PubMed  Google Scholar 

  53. Cummings JL, Schneider L, Tariot PN, Kershaw PR, Yuan W. Reduction of behavioral disturbances and caregiver distress by galantamine in patients with Alzheimer’s disease. Am J Psychiatry. 2004;161(3):532–8.

    Article  PubMed  Google Scholar 

  54. Kaufer D. Beyond the cholinergic hypothesis: the effect of metrifonate and other cholinesterase inhibitors on neuropsychiatric symptoms in Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998;9(Suppl 2):8–14.

    Article  CAS  PubMed  Google Scholar 

  55. Morris JC, Cyrus PA, Orazem J, Mas J, Bieber F, Ruzicka BB, et al. Metrifonate benefits cognitive, behavioral, and global function in patients with Alzheimer’s disease. Neurology. 1998;50(5):1222–30.

    Article  CAS  PubMed  Google Scholar 

  56. Dubois B, McKeith I, Orgogozo JM, Collins O, Meulien D. A multicentre, randomized, double-blind, placebo-controlled study to evaluate the efficacy, tolerability and safety of two doses of metrifonate in patients with mild-to-moderate Alzheimer’s disease: the MALT study. Int J Geriatr Psychiatry. 1999;14(11):973–82.

    Article  CAS  PubMed  Google Scholar 

  57. Raskind MA, Cyrus PA, Ruzicka BB, Gulanski BI. The effects of metrifonate on the cognitive, behavioral, and functional performance of Alzheimer’s disease patients. Metrifonate Study Group. J Clin Psychiatry. 1999;60(5):318–25.

    Article  CAS  PubMed  Google Scholar 

  58. Cummings JL, Nadel A, Masterman D, Cyrus PA. Efficacy of metrifonate in improving the psychiatric and behavioral disturbances of patients with Alzheimer’s disease. J Geriatr Psychiatry Neurol. 2001;14(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  59. Tariot PN, Cummings JL, Katz IR, Mintzer J, Perdomo CA, Schwam EM, et al. A randomized, double-blind, placebo-controlled study of the efficacy and safety of donepezil in patients with Alzheimer’s disease in the nursing home setting. J Am Geriatr Soc. 2001;49(12):1590–9.

    Article  CAS  PubMed  Google Scholar 

  60. Gauthier S, Feldman H, Hecker J, Vellas B, Ames D, Subbiah P, et al. Efficacy of donepezil on behavioral symptoms in patients with moderate to severe Alzheimer’s disease. Int Psychogeriatr. 2002;14(4):389–404.

    Article  PubMed  Google Scholar 

  61. Gauthier S, Feldman H, Hecker J, Vellas B, Emir B, Subbiah P. Functional, cognitive and behavioral effects of donepezil in patients with moderate Alzheimer’s disease. Curr Med Res Opin. 2002;18(6):347–54.

    Article  CAS  PubMed  Google Scholar 

  62. Holmes C, Wilkinson D, Dean C, Vethanayagam S, Olivieri S, Langley A, et al. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology. 2004;63(2):214–9.

    Article  CAS  PubMed  Google Scholar 

  63. Feldman H, Gauthier S, Hecker J, Vellas B, Xu Y, Ieni JR, et al. Efficacy and safety of donepezil in patients with more severe Alzheimer’s disease: a subgroup analysis from a randomized, placebo-controlled trial. Int J Geriatr Psychiatry. 2005;20(6):559–69.

    Article  PubMed  Google Scholar 

  64. Seltzer B, Zolnouni P, Nunez M, Goldman R, Kumar D, Ieni J, et al. Efficacy of donepezil in early-stage Alzheimer disease: a randomized placebo-controlled trial. Arch Neurol. 2004;61(12):1852–6.

    Article  PubMed  Google Scholar 

  65. Rea R, Carotenuto A, Traini E, Fasanaro AM, Manzo V, Amenta F. Apathy treatment in Alzheimer’s disease: interim results of the ASCOMALVA trial. J Alzheimers Dis. 2015;48(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  66. Åhlin A, Nybäck H, Junthe T, Öhman G, Nordgren I. Tetrahydroaminoacridine in Alzheimer’s dementia: clinical and biochemical results of a double-blind crossover trial. Hum Psychopharmacol Clin Exp. 1991;6(2):109–18.

    Article  Google Scholar 

  67. Devos D, Moreau C, Maltête D, Lefaucheur R, Kreisler A, Eusebio A, et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson’s disease: a double-blind, placebo-controlled, randomised clinical trial. J Neurol Neurosurg Psychiatry. 2014;85(6):668–74.

    Article  PubMed  Google Scholar 

  68. McKeith I, Del Ser T, Spano P, Emre M, Wesnes K, Anand R, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet. 2000;356(9247):2031–6.

    Article  CAS  PubMed  Google Scholar 

  69. Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV. Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359(9314):1283–90.

    Article  PubMed  Google Scholar 

  70. Carotenuto A, Rea R, Traini E, Fasanaro AM, Ricci G, Manzo V, et al. The effect of the association between donepezil and choline alphoscerate on behavioral disturbances in Alzheimer’s disease: interim results of the ASCOMALVA trial. J Alzheimers Dis. 2017;56(2):805–15.

    Article  CAS  PubMed  Google Scholar 

  71. Švob Štrac D, Pivac N, Mück-Šeler D. The serotonergic system and cognitive function. Transl Neurosci. 2016;7(1):35–49.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38.

    Article  PubMed  Google Scholar 

  73. Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson’s disease. Prog Neurobiol. 2011;95(2):163–212.

    Article  CAS  PubMed  Google Scholar 

  74. Pla P, Orvoen S, Saudou F, David DJ, Humbert S. Mood disorders in Huntington’s disease: from behavior to cellular and molecular mechanisms. Front Behav Neurosci. 2014;8:135.

    Article  PubMed  PubMed Central  Google Scholar 

  75. van der Zande JJ, Joling M, Happach IG, Vriend C, Scheltens P, Booij J, et al. Serotonergic deficits in dementia with Lewy bodies with concomitant Alzheimer’s disease pathology: an (123)I-FP-CIT SPECT study. Neuroimage Clin. 2020;25:102062.

    Article  PubMed  Google Scholar 

  76. Lawlor BA, Sunderland T, Mellow AM, Hill JL, Molchan SE, Murphy DL. Hyperresponsivity to the serotonin agonist m-chlorophenylpiperazine in Alzheimer’s disease. A controlled study. Arch Gen Psychiatry. 1989;46(6):542–9.

    Article  CAS  PubMed  Google Scholar 

  77. Lanctôt KL, Herrmann N, van Reekum R, Eryavec G, Naranjo CA. Gender, aggression and serotonergic function are associated with response to sertraline for behavioral disturbances in Alzheimer’s disease. Int J Geriatr Psychiatry. 2002;17(6):531–41.

    Article  PubMed  Google Scholar 

  78. Zhou T, Wang J, Xin C, Kong L, Wang C. Effect of memantine combined with citalopram on cognition of BPSD and moderate Alzheimer’s disease: a clinical trial. Exp Ther Med. 2019;17(3):1625–30.

    CAS  PubMed  Google Scholar 

  79. Leonpacher AK, Peters ME, Drye LT, Makino KM, Newell JA, Devanand DP, et al. Effects of citalopram on neuropsychiatric symptoms in Alzheimer’s dementia: evidence from the CitAD study. Am J Psychiatry. 2016;173(5):473–80.

    Article  PubMed  Google Scholar 

  80. Nyth AL, Gottfries CG. The clinical efficacy of citalopram in treatment of emotional disturbances in dementia disorders. A Nordic multicentre study. Br J Psychiatry. 1990;157:894–901.

    Article  CAS  PubMed  Google Scholar 

  81. Lebert F, Stekke W, Hasenbroekx C, Pasquier F. Frontotemporal dementia: a randomised, controlled trial with trazodone. Dement Geriatr Cogn Disord. 2004;17(4):355–9.

    Article  CAS  PubMed  Google Scholar 

  82. Ranjbar-Slamloo Y, Fazlali Z. Dopamine and noradrenaline in the brain; overlapping or dissociate functions? Front Mol Neurosci. 2020;12:334.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gannon M, Wang Q. Complex noradrenergic dysfunction in Alzheimer’s disease: low norepinephrine input is not always to blame. Brain Res. 2019;1702:12–6.

    Article  CAS  PubMed  Google Scholar 

  84. Paredes-Rodriguez E, Vegas-Suarez S, Morera-Herreras T, De Deurwaerdere P, Miguelez C. The noradrenergic system in Parkinson’s disease. Front Pharmacol. 2020;11:435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spokes EGS. Neurochemical alterations in Huntington’s chorea: a study of post-mortem brain tissue. Brain. 1980;103(1):179–210.

    Article  CAS  PubMed  Google Scholar 

  86. Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J Neurosci. 2006;26(2):467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. van Dyck CH, Arnsten AFT, Padala PR, Brawman-Mintzer O, Lerner AJ, Porsteinsson AP, et al. Neurobiologic rationale for treatment of apathy in alzheimer’s disease with methylphenidate. Am J Geriatr Psychiatry. 2021;29(1):51–62.

    Article  PubMed  Google Scholar 

  88. Maier F, Spottke A, Bach JP, Bartels C, Buerger K, Dodel R, et al. Bupropion for the treatment of apathy in Alzheimer disease: a randomized clinical trial. JAMA Netw Open. 2020;3(5):e206027.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gelderblom H, Wüstenberg T, McLean T, Mütze L, Fischer W, Saft C, et al. Bupropion for the treatment of apathy in Huntington’s disease: a multicenter, randomised, double-blind, placebo-controlled, prospective crossover trial. PLoS ONE. 2017;12(3):e0173872.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wu C, Sun D. GABA receptors in brain development, function, and injury. Metab Brain Dis. 2015;30(2):367–79.

    Article  CAS  PubMed  Google Scholar 

  91. Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci. 2016;8:31.

    Article  PubMed  PubMed Central  Google Scholar 

  92. de Jong PJ, Lakke JP, Teelken AW. CSF GABA levels in Parkinson’s disease. Adv Neurol. 1984;40:427–30.

    PubMed  Google Scholar 

  93. Tosca P, Canevari L, Di Paolo E, Ferrari R, Verzé S, Zerbi F, et al. Glutamate and GABA levels in CSF from patients affected by dementia and olivo-ponto-cerebellar atrophy. Acta Neurol Scand. 1992;85(6):430–5.

    Article  CAS  PubMed  Google Scholar 

  94. Reynolds GP, Pearson SJ, Heathfield KWG. Dementia in Huntington’s disease is associated with neurochemical deficits in the caudate nucleus, not the cerebral cortex. Neurosci Lett. 1990;113(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  95. Huey ED, Putnam KT, Grafman J. A systematic review of neurotransmitter deficits and treatments in frontotemporal dementia. Neurology. 2006;66(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  96. Lanctôt KL, Herrmann N, Rothenburg L, Eryavec G. Behavioral correlates of GABAergic disruption in Alzheimer’s disease. Int Psychogeriatr. 2007;19(1):151–8.

    Article  PubMed  Google Scholar 

  97. Sival RC, Haffmans PM, Jansen PA, Duursma SA, Eikelenboom P. Sodium valproate in the treatment of aggressive behavior in patients with dementia—a randomized placebo controlled clinical trial. Int J Geriatr Psychiatry. 2002;17(6):579–85.

    Article  PubMed  Google Scholar 

  98. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014;121(8):799–817.

    Article  CAS  Google Scholar 

  99. Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis. 2017;57:1041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Madeira C, Vargas-Lopes C, Brandão CO, Reis T, Laks J, Panizzutti R, et al. Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression. Front Psychiatry. 2018;9:561.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Iovino L, Tremblay ME, Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci. 2020;144(3):151–64.

    Article  CAS  PubMed  Google Scholar 

  102. Albasanz JL, Dalfó E, Ferrer I, Martín M. Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis. 2005;20(3):685–93.

    Article  CAS  PubMed  Google Scholar 

  103. Araki T, Wake R, Miyaoka T, Kawakami K, Nagahama M, Furuya M, et al. The effects of combine treatment of memantine and donepezil on Alzheimer’s disease patients and its relationship with cerebral blood flow in the prefrontal area. Int J Geriatr Psychiatry. 2014;29(9):881–9.

    Article  PubMed  Google Scholar 

  104. Gauthier S, Wirth Y, Möbius HJ. Effects of memantine on behavioural symptoms in Alzheimer’s disease patients: an analysis of the Neuropsychiatric Inventory (NPI) data of two randomised, controlled studies. Int J Geriatr Psychiatry. 2005;20(5):459–64.

    Article  CAS  PubMed  Google Scholar 

  105. Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333–41.

    Article  CAS  PubMed  Google Scholar 

  106. Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–24.

    Article  CAS  PubMed  Google Scholar 

  107. Winblad B, Poritis N. Memantine in severe dementia: results of the 9M-Best Study (Benefit and efficacy in severely demented patients during treatment with memantine). Int J Geriatr Psychiatry. 1999;14(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  108. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88(3):1183–241.

    Article  CAS  PubMed  Google Scholar 

  109. Thakkar MM. Histamine in the regulation of wakefulness. Sleep Med Rev. 2011;15(1):65–74.

    Article  PubMed  Google Scholar 

  110. Sedeyn JC, Wu H, Hobbs RD, Levin EC, Nagele RG, Venkataraman V. Histamine induces Alzheimer’s disease-like blood brain barrier breach and local cellular responses in mouse brain organotypic cultures. BioMed Res Int. 2015;2015:937148.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zlomuzica A, Dere D, Binder S, De Souza Silva MA, Huston JP, Dere E. Neuronal histamine and cognitive symptoms in Alzheimer’s disease. Neuropharmacology. 2016;106:135–45.

    Article  CAS  PubMed  Google Scholar 

  112. Rinne JO, Anichtchik OV, Eriksson KS, Kaslin J, Tuomisto L, Kalimo H, et al. Increased brain histamine levels in Parkinson’s disease but not in multiple system atrophy. J Neurochem. 2002;81(5):954–60.

    Article  CAS  PubMed  Google Scholar 

  113. van Wamelen DJ, Shan L, Aziz NA, Anink JJ, Bao AM, Roos RA, et al. Functional increase of brain histaminergic signaling in Huntington’s disease. Brain Pathol. 2011;21(4):419–27.

    Article  PubMed  Google Scholar 

  114. Naddafi F, Mirshafiey A. The neglected role of histamine in Alzheimer’s disease. Am J Alzheimer’s Dis Other Dement. 2013;28(4):327–36.

    Article  Google Scholar 

  115. Benarroch EE, Schmeichel AM, Parisi JE, Low PA. Histaminergic tuberomammillary neuron loss in multiple system atrophy and dementia with Lewy bodies. Mov Disord. 2015;30(8):1133–9.

    Article  PubMed  Google Scholar 

  116. Stasiak A, Mussur M, Unzeta M, Łażewska D, Kiec-Kononowicz K, Fogel WA. The central histamine level in rat model of vascular dementia. J Physiol Pharmacol. 2011;62:549–58.

    CAS  PubMed  Google Scholar 

  117. Verdejo-García A, Rivas-Pérez C, López-Torrecillas F, Pérez-García M. Differential impact of severity of drug use on frontal behavioral symptoms. Addict Behav. 2006;31(8):1373–82.

    Article  PubMed  Google Scholar 

  118. Yoshizawa M, Tashiro M, Fukudo S, Yanai K, Utsumi A, Kano M, et al. Increased brain histamine H1 receptor binding in patients with anorexia nervosa. Biol Psychiatry (1969). 2009;65(4):329–35.

    Article  CAS  Google Scholar 

  119. Horner WE, Johnson DE, Schmidt AW, Rollema H. Methylphenidate and atomoxetine increase histamine release in rat prefrontal cortex. Eur J Pharmacol. 2007;558(1):96–7.

    Article  CAS  PubMed  Google Scholar 

  120. Ebrahim IO, Howard RS, Kopelman MD, Sharief MK, Williams AJ. The hypocretin/orexin system. J R Soc Med. 2002;95(5):227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Um YH, Lim HK. Orexin and Alzheimer’s disease: a new perspective. Psychiatry Investig. 2020;17(7):621–6.

    Article  CAS  PubMed  Google Scholar 

  122. Liu C, Xue Y, Liu M-F, Wang Y, Chen L. Orexin and Parkinson’s disease: a protective neuropeptide with therapeutic potential. Neurochem Int. 2020;138:104754.

    Article  CAS  PubMed  Google Scholar 

  123. Petersén Å, Gil J, Maat-Schieman MLC, Björkqvist M, Tanila H, Araújo IM, et al. Orexin loss in Huntington’s disease. Hum Mol Genet. 2005;14(1):39–47.

    Article  PubMed  Google Scholar 

  124. Çoban A, Bilgiç B, Lohmann E, Küçükali Cİ, Benbir G, Karadeniz D, et al. Reduced orexin—a levels in frontotemporal dementia: possible association with sleep disturbance. Am J Alzheimer’s Dis Other Dement. 2013;28(6):606–11.

    Article  Google Scholar 

  125. Song J, Kim E, Kim C-H, Song H-T, Lee JE. The role of orexin in post-stroke inflammation, cognitive decline, and depression. Mol Brain. 2015;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lessig S, Ubhi K, Galasko D, Adame A, Pham E, Remidios K, et al. Reduced hypocretin (orexin) levels in dementia with Lewy bodies. NeuroReport. 2010;21(11):756–60.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Nocjar C, Zhang J, Feng P, Panksepp J. The social defeat animal model of depression shows diminished levels of orexin in mesocortical regions of the dopamine system, and of dynorphin and orexin in the hypothalamus. Neuroscience. 2012;218:138–53.

    Article  CAS  PubMed  Google Scholar 

  128. Holzer P, Reichmann F, Farzi A, Neuropeptide Y. peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 2012;46(6):261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ferrini F, Salio C, Lossi L, Merighi A. Ghrelin in central neurons. Curr Neuropharmacol. 2009;7(1):37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Serrenho D, Santos SD, Carvalho AL. The role of ghrelin in regulating synaptic function and plasticity of feeding-associated circuits. Front Cell Neurosci. 2019;13:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pedrini S, Gupta VB, Hone E, Doecke J, O’Bryant S, James I, et al. A blood-based biomarker panel indicates IL-10 and IL-12/23p40 are jointly associated as predictors of β-amyloid load in an AD cohort. Sci Rep. 2017;7(1):14057.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Shi L, Du X, Jiang H, Xie J. Ghrelin and neurodegenerative disorders—a review. Mol Neurobiol. 2017;54(2):1144–55.

    Article  CAS  PubMed  Google Scholar 

  133. Yang D, Zhao D, Ali Shah SZ, Wu W, Lai M, Zhang X, et al. The role of the gut microbiota in the pathogenesis of Parkinson’s disease. Front Neurol. 2019;10:1155.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hornsby AKE, Buntwal L, Carisi MC, Santos VV, Johnston F, Roberts LD, et al. Unacylated-ghrelin impairs hippocampal neurogenesis and memory in mice and is altered in parkinson’s dementia in humans. Cell Rep Med. 2020;1(7):100120.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cong W, Cai H, Wang R, Daimon CM, Maudsley S, Raber K, et al. Altered hypothalamic protein expression in a rat model of Huntington’s disease. PLoS ONE. 2012;7(10):e47240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stoyanova II. Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol Dis. 2014;72:72–83.

    Article  CAS  PubMed  Google Scholar 

  137. Yamada C, Mogami S, Kanno H, Hattori T. Peptide YY causes apathy-like behavior via the dopamine D2 receptor in repeated water-immersed mice. Mol Neurobiol. 2018;55(9):7555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bjorness TE, Greene RW. Adenosine and sleep. Curr Neuropharmacol. 2009;7(3):238–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen JF. Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol. 2014;119:257–307.

    Article  PubMed  Google Scholar 

  140. Anisur R. The role of adenosine in Alzheimers disease. Curr Neuropharmacol. 2009;7(3):207–16.

    Article  Google Scholar 

  141. Nazario LR, da Silva RS, Bonan CD. Targeting adenosine signaling in Parkinson’s disease: from pharmacological to non-pharmacological approaches. Front Neurosci. 2017;11:658.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Uchida S, Kadowaki-Horita T, Kanda T. Effects of the adenosine A2A receptor antagonist on cognitive dysfunction in Parkinson’s disease. Int Rev Neurobiol. 2014;119:169–89.

    Article  PubMed  Google Scholar 

  143. Varani K, Rigamonti D, Sipione S, Camurri A, Borea PA, Cattabeni F, et al. Aberrant amplification of A(2A) receptor signaling in striatal cells expressing mutant huntingtin. Faseb j. 2001;15(7):1245–7.

    Article  CAS  PubMed  Google Scholar 

  144. Tarditi A, Camurri A, Varani K, Borea PA, Woodman B, Bates G, et al. Early and transient alteration of adenosine A2A receptor signaling in a mouse model of Huntington disease. Neurobiol Dis. 2006;23(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  145. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta. 2011;1808(5):1380–99.

    Article  CAS  PubMed  Google Scholar 

  146. Martire A, Pepponi R, Domenici MR, Ferrante A, Chiodi V, Popoli P. BDNF prevents NMDA-induced toxicity in models of Huntington’s disease: the effects are genotype specific and adenosine A2A receptor is involved. J Neurochem. 2013;125(2):225–35.

    Article  CAS  PubMed  Google Scholar 

  147. Tyebji S, Saavedra A, Canas PM, Pliassova A, Delgado-García JM, Alberch J, et al. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington’s disease. Neurobiol Dis. 2015;74:41–57.

    Article  CAS  PubMed  Google Scholar 

  148. Carvalho K, Faivre E, Pietrowski MJ, Marques X, Gomez-Murcia V, Deleau A, et al. Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor. Brain. 2019;142(11):3636–54.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Gussago C, Arosio B, Casati M, Ferri E, Gualandris F, Tedone E, et al. Different adenosine A 2A receptor expression in peripheral cells from elderly patients with vascular dementia and Alzheimer’s disease. J Alzheimers Dis. 2014;40:45–9.

    Article  CAS  PubMed  Google Scholar 

  150. Garcia-Esparcia P, López-González I, Grau-Rivera O, García-Garrido MF, Konetti A, Llorens F, et al. Dementia with lewy bodies: molecular pathology in the frontal cortex in typical and rapidly progressive forms. Front Neurol. 2017;8:89.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Nagayama H, Kano O, Murakami H, Ono K, Hamada M, Toda T, et al. Effect of istradefylline on mood disorders in Parkinson’s disease. J Neurol Sci. 2019;396:78–83.

    Article  CAS  PubMed  Google Scholar 

  152. Orr AG, Lo I, Schumacher H, Ho K, Gill M, Guo W, et al. Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol Dis. 2018;110:29–36.

    Article  CAS  PubMed  Google Scholar 

  153. Li W, Silva HB, Real J, Wang Y-M, Rial D, Li P, et al. Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington’s disease models. Neurobiol Dis. 2015;79:70–80.

    Article  CAS  PubMed  Google Scholar 

  154. Rosenberg PB, Lanctôt KL, Herrmann N, Mintzer JE, Porsteinsson AP, Sun X, et al. Changes in neuropsychiatric inventory associated with semagacestat treatment of Alzheimer’s disease. J Alzheimers Dis. 2016;54(1):373–81.

    Article  PubMed  Google Scholar 

  155. Trzepacz PT, Cummings J, Konechnik T, Forrester TD, Chang C, Dennehy EB, et al. Mibampator (LY451395) randomized clinical trial for agitation/aggression in Alzheimer’s disease. Int Psychogeriatr. 2013;25(5):707–19.

    Article  PubMed  Google Scholar 

  156. Kim SY, Choi SH, Rollema H, Schwam EM, McRae T, Dubrava S, et al. Phase II crossover trial of varenicline in mild-to-moderate Alzheimer’s disease. Dement Geriatr Cogn Disord. 2014;37(3–4):232–45.

    Article  CAS  PubMed  Google Scholar 

  157. Ban TA, Morey L, Aguglia E, Azzarelli O, Balsano F, Marigliano V, et al. Nimodipine in the treatment of old age dementias. Prog Neuropsychopharmacol Biol Psychiatry. 1990;14(4):525–51.

    Article  CAS  PubMed  Google Scholar 

  158. Scripnikov A, Khomenko A, Napryeyenko O. Effects of Ginkgo biloba extract EGb 761 on neuropsychiatric symptoms of dementia: findings from a randomised controlled trial. Wien Med Wochenschr. 2007;157(13–14):295–300.

    Article  PubMed  Google Scholar 

  159. Bachinskaya N, Hoerr R, Ihl R. Alleviating neuropsychiatric symptoms in dementia: the effects of Ginkgo biloba extract EGb 761. Findings from a randomized controlled trial. Neuropsychiatr Dis Treat. 2011;7:209–15.

    PubMed  PubMed Central  Google Scholar 

  160. Bayer A, Bokonjic R, Booya N. European pentoxifylline multi-infarct dementia study. Eur Neurol. 1996;36(5):315–21.

    Article  Google Scholar 

  161. Finger EC, MacKinley J, Blair M, Oliver LD, Jesso S, Tartaglia MC, et al. Oxytocin for frontotemporal dementia: a randomized dose-finding study of safety and tolerability. Neurology. 2015;84(2):174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Callegari I, Mattei C, Benassi F, Krueger F, Grafman J, Yaldizli Ö, et al. Agomelatine Improves Apathy in Frontotemporal Dementia. Neurodegener Dis. 2016;16(5–6):352–6.

    Article  CAS  PubMed  Google Scholar 

  163. Ruthirakuhan MT, Herrmann N, Abraham EH, Chan S, Lanctôt KL. Pharmacological interventions for apathy in Alzheimer's disease. Cochrane Database Syst Rev. 2018;5(5):CD012197.

  164. Charach G, Karniel E, Grosskopf I, Rabinovich A, Charach L. Methylphenidate has mild hyperglycemic and hypokalemia effects and increases leukocyte and neutrophil counts. Medicine (Baltimore). 2020;99(27):e20931-e.

    Article  Google Scholar 

  165. Shin J-Y, Roughead EE, Park B-J, Pratt NL. Cardiovascular safety of methylphenidate among children and young people with attention-deficit/hyperactivity disorder (ADHD): nationwide self controlled case series study. BMJ. 2016;353:i2550.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gauthier S, Loft H, Cummings J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer’s disease by memantine: a pooled data analysis. Int J Geriatr Psychiatry. 2008;23(5):537–45.

    Article  CAS  PubMed  Google Scholar 

  167. Ohbe H, Jo T, Matsui H, Fushimi K, Yasunaga H. Cholinergic crisis caused by cholinesterase inhibitors: a retrospective nationwide database study. J Med Toxicol. 2018;14(3):237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Barthold D, Joyce G, Ferido P, Drabo EF, Marcum ZA, Gray SL, et al. Pharmaceutical treatment for Alzheimer’s disease and related dementias: utilization and disparities. J Alzheimer’s Dis JAD. 2020;76(2):579–89.

    Article  Google Scholar 

  169. Tampi RR, Tampi DJ, Balachandran S, Srinivasan S. Antipsychotic use in dementia: a systematic review of benefits and risks from meta-analyses. Ther Adv Chronic Dis. 2016;7(5):229–45.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Porsteinsson AP, Drye LT, Pollock BG, Devanand DP, Frangakis C, Ismail Z, et al. Effect of citalopram on agitation in Alzheimer disease: the CitAD randomized clinical trial. JAMA. 2014;311(7):682–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Qirjazi E, McArthur E, Nash DM, Dixon SN, Weir MA, Vasudev A, et al. Risk of ventricular arrhythmia with citalopram and escitalopram: a population-based study. PLoS ONE. 2016;11(8):e0160768-e.

    Article  Google Scholar 

  172. Chen F, Jin L, Nie Z. Safety and efficacy of rotigotine for treating Parkinson’s disease: a meta-analysis of randomised controlled trials. J Pharm Pharm Sci. 2017;20:285–94.

    Article  CAS  PubMed  Google Scholar 

  173. Carbone F, Djamshidian A, Seppi K, Poewe W. Apomorphine for parkinson’s disease: efficacy and safety of current and new formulations. CNS Drugs. 2019;33(9):905–18.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ohsawa M, Tanaka Y, Ehara Y, Makita S, Onaka K. A possibility of simultaneous treatment with the multicomponent drug, Ninjin’yoeito, for anorexia, apathy, and cognitive dysfunction in frail Alzheimer’s disease patients: an open-label pilot study. J Alzheimers Dis Rep. 2017;1(1):229–35.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Van Reekum R, Bayley M, Garner S, Burke IM, Fawcett S, Hart A, et al. N of 1 study: amantadine for the amotivational syndrome in a patient with traumatic brain injury. Brain Inj. 1995;9(1):49–53.

    Article  PubMed  Google Scholar 

  176. Postma JU, Van Tilburg W. Visual hallucinations and delirium during treatment with amantadine (Symmetrel). J Am Geriatr Soc. 1975;23(5):212–5.

    Article  CAS  PubMed  Google Scholar 

  177. Theleritis CG, Siarkos KT, Politis AM. Unmet needs in pharmacological treatment of apathy in Alzheimer’s disease: a systematic review. Front Pharmacol. 2019;10:1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Matsuzono K, Hishikawa N, Ohta Y, Yamashita T, Deguchi K, Nakano Y, et al. Combination therapy of cholinesterase inhibitor (donepezil or galantamine) plus memantine in the okayama memantine study. J Alzheimers Dis. 2015;45(3):771–80.

    Article  CAS  PubMed  Google Scholar 

  179. Lanctôt KL, Agüera-Ortiz L, Brodaty H, Francis PT, Geda YE, Ismail Z, et al. Apathy associated with neurocognitive disorders: recent progress and future directions. Alzheimers Dement. 2017;13(1):84–100.

    Article  PubMed  Google Scholar 

  180. Mohammad D, Ellis C, Rau A, Rosenberg PB, Mintzer J, Ruthirakuhan M, et al. Psychometric properties of apathy scales in dementia: a systematic review. J Alzheimers Dis. 2018;66(3):1065–82.

    Article  PubMed  Google Scholar 

  181. Cummings J, Friedman JH, Garibaldi G, Jones M, Macfadden W, Marsh L, et al. Apathy in neurodegenerative diseases: recommendations on the design of clinical trials. J Geriatr Psychiatry Neurol. 2015;28(3):159–73.

    Article  PubMed  Google Scholar 

  182. Glenn M. The Apathy Evaluation Scale. The center for outcome measurement in brain injury. 2005. http://www.tbims.org/combi/aes.

  183. Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology. 1997;48(5 Suppl 6):S10–6.

    Article  CAS  PubMed  Google Scholar 

  184. Cai Y, Li L, Xu C, Wang Z. The effectiveness of non-pharmacological interventions on apathy in patients with dementia: a systematic review of systematic reviews. Worldviews Evid Based Nurs. 2020;17(4):311–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Herrmann.

Ethics declarations

Funding

No sources of funding were used to assist with the preparation of this review.

Conflict of interest

Krista L. Lanctôt has received grants from the Alzheimer’s Association, the Alzheimer’s Drug Discovery Foundation, the Canadian Institutes of Health Research, the National Institutes of Aging, and the Weston Brain Institute; consulting fees from BioXcel, Cerevel, Eisai, GW Pharma, ICG Pharma, Kondor Pharma, Novo Nordisk, Otsuka, and Praxis; and stock options from Highmark Interactive outside the submitted work. Nathan Herrmann, Laiba Azhar, Raphael W. Kusumo, and Giovanni Marotta have no conflicts of interest that are directly relevant to the content of this article.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent

Not applicable.

Author contributions

The idea for the review was suggested by Nathan Herrmann. Drafts of the manuscript and literature searches were written and performed by Laiba Azhar, Nathan Herrmann, Krista L. Lanctôt, and Raphael W. Kusumo. All authors reviewed and commented on all versions of the manuscript, approved the final manuscript, and agree to be accountable for the manuscript.

Appendix

Appendix

Quality assessment risk of bias summary

Study

Random sequence generation (selection bias)

Allocation concealment (selection bias)

Binding of participant and personnel (performance bias)

Binding of outcome assessments (detection bias)

Incomplete outcome data (attrition bias)

Selective outcome reporting (reporting bias)

Other bias

Åhlin et al. [66]

+

+

+

+

+

+

+

Araki et al. [103]

+

+

?

+

+

+

Bachinskaya et al. [159]

+

+

+

+

+

+

+

Ban et al. [157]

+

+

+

+

+

+

+

Barone et al. [42]

+

+

+

+

+

+

Bayer et al. [160]

+

+

+

+

+

+

+

Callegari et al. [162]

+

+

+

+

+

+

?

Castrioto et al. [41]

+

+

+

+

+

+

+

Cummings et al. [58]

?

?

?

?

+

+

+

Cummings et al. [53]

+

+

+

+

+

+

?

De Deyn et al. [37]

+

+

+

+

+

+

?

De Deyn et al. [36]

+

+

+

+

+

?

Devos et al. [67]

+

+

+

+

+

+

+

Dubois et al. [56]

+

+

+

+

+

+

+

Erkinjuntti et al. [69]

+

+

+

+

+

+

+

Feldman et al. [63]

+

+

+

+

+

+

+

Finger et al. [161]

+

+

+

+

+

+

+

Frakey et al. [33]

+

+

+

+

+

+

+

Gauthier et al. [61]

+

+

+

+

+

+

+

Gauthier et al. [60]

+

+

+

+

+

+

+

Gauthier et al. [104]

?

?

?

?

+

+

?

Gelderblom et al. [89]

+

+

+

+

+

+

+

Hauser et al. [40]

+

+

+

+

+

+

+

Herrmann et al. [52]

+

+

+

+

+

+

?

Herrmann et al. [29]

+

+

+

+

+

+

?

Holmes et al. [62]

+

+

+

+

+

+

+

Kaufer et al. [54]

+

+

+

+

+

+

?

Kim et al. [156]

+

+

+

+

+

+

+

Lanctôt et al. [77]

+

+

+

+

+

+

+

Lawlor et al. [76]

+

+

+

+

+

+

?

Lebert et al. [81]

+

+

+

+

+

+

+

Leonpacher et al. [79]

+

+

+

+

+

?

Maier et al. [88]

+

+

+

+

+

+

+

McKeith et al. [68]

+

+

+

+

+

+

+

Mintzer et al. [32]

+

+

+

+

+

+

+

Moreau et al. [39]

+

+

+

+

+

+

+

Morris et al. [55]

+

+

+

+

+

+

+

Nave et al. [34]

+

+

+

+

+

+

+

Nyth and Gottfries [80]

+

+

+

+

+

+

+

Padala et al. [30]

+

+

+

+

+

+

+

Pollock et al. [35]

+

+

+

+

+

?

Raskind et al. [57]

+

+

+

+

+

+

+

Rea et al. [65]

+

+

+

+

+

Rosenberg et al. [31]

+

+

+

+

+

+

+

Rosenberg et al. [154]

+

+

+

+

+

+

+

Scripnikov et al. [158]

+

+

+

+

?

Seltzer et al. [64]

+

+

+

+

+

+

+

Sival et al. [97]

+

+

+

+

+

+

+

Tariot et al. [59]

+

+

+

+

+

+

+

Trzepacz et al. [155]

+

+

+

+

+

+

+

Winblad and Poritis [107]

+

+

+

+

+

+

+

Zhou et al. [78]

+

+

+

+

+

+

+

  1. + indicates low risk of bias; – indicates high risk of bbias; ? indicates unclear risk of bias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, L., Kusumo, R.W., Marotta, G. et al. Pharmacological Management of Apathy in Dementia. CNS Drugs 36, 143–165 (2022). https://doi.org/10.1007/s40263-021-00883-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-021-00883-0

Navigation