Skip to main content
Log in

Nanosorbent based on coprecipitation of ZnO in goethite for competitive sorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) systems

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Amongst the various water pollutants, heavy metal ions require special attention because of their toxic nature and effects on humans and the environment. Preserving natural resources will have positive impacts on living conditions by reducing diseases and water treatment by nanotechnology is effective in solving this problem owing to the properties of nanomaterials. In this study, a goethite nanoparticle was prepared by hydrothermal method, while ZnO/goethite nanocomposite by co-precipitation was developed. The nanoparticles were characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transform Electron Microscopy (TEM), Thermogravimetric Differential Thermal Analysis (TGA-DTA), Dynamic Light Scattering (DLS), and Breunner-Emmet-Teller (BET) surface area analysis. The adsorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) ions systems on ZnO/goethite nanocomposite was investigated in a batch mode. The findings of the study showed that nanoparticles ZnO/goethite composite were mixed of spherical and rod-like shapes. The BET results revealed average particle sizes of 41.11 nm for nanoparticles for ZnO/goethite while TGA/DTA confirmed the stability of the adsorbents. The optimum adsorption capacities of the nanocomposite for Pb(II), Cd(II), and Ni(II) ions from the Pb-Cd-Ni ternary system were 415.5, 195.3, and 87.13 mg g−1, respectively. The adsorption isotherm data fitted well with the Langmuir isotherm model. The study concluded that the nanoparticle adsorbents are efficient for the remediation of toxic pollutants and are, therefore, recommended for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Enlei Z, Guosheng W, Xiaozhu L, Zhumin W. Synthesis and influence of alkaline concentration on α-FeOOH nanorods shapes. Indian Acad Sci. 2014;37:761–5.

    Google Scholar 

  2. Gottschalk F, Sun T, Nowack B. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut. 2013;181:287–300.

    Article  CAS  Google Scholar 

  3. Ararem A, Bouras O, Bouzidi A. Batch and continuous fixed-bed column adsorption of Cs+ and Sr2+ onto montmorillonite–iron oxide composite: comparative and competitive study. J Radioanal Nucl Chem. 2013;298:537–45.

    Article  CAS  Google Scholar 

  4. Liu L, Chen W-T, Kihara S, Kilmartin PA. Green synthesis of akaganéite (β-FeOOH) nanocomposites as peroxidase-mimics and application for discoloration of methylene blue. J Environ Manage. 2021;296:113163.

    Article  CAS  Google Scholar 

  5. Ighalo JO, Sagboye PA, Umenweke G, Ajala OJ, Omoarukhe FO, Adeyanju CA, et al. CuO nanoparticles (CuO NPs) for water treatment: a review of recent advances. Environ Nanotechnol Monit Manag. 2021;15:100443.

    CAS  Google Scholar 

  6. Njimou JR, Măicăneanu A, Indolean C, Nanseu-Njiki CP, Ngameni E. Removal of Cd (II) from synthetic wastewater by alginate-ayous wood sawdust (Triplochiton scleroxylon) composite material. Environ Technol. 2016;37:1369–81.

    Article  CAS  Google Scholar 

  7. Farahmandjou M, Soflaee F. Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys Chem Res. 2015;3:191–6.

    CAS  Google Scholar 

  8. Fu D, Keech PG, Sun X, Wren JC. Iron oxyhydroxide nanoparticles formed by forced hydrolysis: dependence of phase composition on solution concentration. Phys Chem Chem Phys. 2011;13:18523–9.

    Article  CAS  Google Scholar 

  9. Zhang J, Zhu X, Yu K. Surfactant-assisted nanorod synthesis of α-FeOOH and its adsorption characteristics for methylene blue. J Mater Res. 2014;29(4):509–18. https://doi.org/10.1557/jmr.2013.387.

    Article  CAS  Google Scholar 

  10. Njimou JR, Godwin J, Pahimi H, Maicaneanu SA, Kouatchie-Njeutcha F, Tripathy BC, et al. Biocomposite spheres based on aluminum oxide dispersed with orange-peel powder for adsorption of phenol from batch membrane fraction of olive mill wastewater. Colloid Interface Sci Commun. 2021;42:100402.

    Article  CAS  Google Scholar 

  11. Yangui A, Njimou JR, Cicci A, Bravi M, Abderrabba M, Chianese A. Competitive adsorption, selectivity and separation of valuable hydroxytyrosol and toxic phenol from olive mill wastewater. J Environ Chem Eng. 2017;5:3581–9.

    Article  CAS  Google Scholar 

  12. Li M, Li X, Wang L, Pei Y, An M, Liu J, et al. Highly efficient and selective removal of anionic dyes from water using a cellulose nanofibril/chitosan sponge prepared by dehydrothermal treatment. J Environ Chem Eng. 2021;9:105745.

    Article  CAS  Google Scholar 

  13. Rahman N, Sato N, Yoshioka S, Sugiyama M, Okabe H, Hara K. Selective Cu (II) adsorption from aqueous solutions including Cu (II), Co (II), and Ni (II) by modified acrylic acid grafted PET film. Int Sch Res Notices. 2013;2013. https://doi.org/10.1155/2013/536314.

  14. Hadi P, Barford J, McKay G. Selective toxic metal uptake using an e-waste-based novel sorbent–single, binary and ternary systems. J Environ Chem Eng. 2014;2:332–9.

    Article  CAS  Google Scholar 

  15. Hema M, Arivoli S. Comparative study on the adsorption kinetics and thermodynamics of dyes onto acid activated low-cost carbon. Int J Phys Sci. 2007;2:010–7.

    Google Scholar 

  16. Janaki V, Vijayaraghavan K, Ramasamy AK, Lee K-J, Oh B-T, Kamala-Kannan S. Competitive adsorption of reactive Orange 16 and reactive brilliant blue R on polyaniline/bacterial extracellular polysaccharides composite—A novel eco-friendly polymer. J Hazard Mater. 2012;241–242:110–7.

    Article  Google Scholar 

  17. Khalfa L, Bagane M, Cervera ML, Najjar S. Competitive adsorption of heavy metals onto natural and activated clay: equilibrium, kinetics and modeling. 2016 [cited 2022 Feb 14]; Available from: https://zenodo.org/record/1124515.

  18. Rathore VK, Mondal P. Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: multicomponent isotherms and spent adsorbent management. Ind Eng Chem Res. 2017;56:8081–94.

    Article  CAS  Google Scholar 

  19. Stietiya MH, Wang JJ. Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. J Environ Qual. 2014;43:498–506.

    Article  Google Scholar 

  20. Chen SB, Ma YB, Chen L, Xian K. Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: single-and multi-metal competitive adsorption study. Geochem J. 2010;44:233–9.

    Article  CAS  Google Scholar 

  21. Al-Jlil SA, Latif MS. Evaluation of equilibrium isotherm models for the adsorption of Cu and Ni from wastewater on bentonite clay. Mater Technol. 2013;47:481–6.

    Google Scholar 

  22. Hassanein TF, Masoud AM, Mohamed WS, Taha MH, Guibal E. Synthesis of polyamide 6/nano-hydroxyapatite hybrid (PA6/n-HAp) for the sorption of rare earth elements and uranium. J Environ Chem Eng. 2021;9:104731.

    Article  CAS  Google Scholar 

  23. Saha S, Basu H, Rout S, Pimple MV, Singhal RK. Nano-hydroxyapatite coated activated carbon impregnated alginate: a new hybrid sorbent for uranium removal from potable water. J Environ Chem Eng. 2020;8:103999.

    Article  CAS  Google Scholar 

  24. Pandi K, Viswanathan N. Synthesis of alginate bioencapsulated nano-hydroxyapatite composite for selective fluoride sorption. Carbohydr Polym. 2014;112:662–7.

    Article  CAS  Google Scholar 

  25. Elkady MF, Mahmoud MM, Abd-El-Rahman HM. Kinetic approach for cadmium sorption using microwave synthesized nano-hydroxyapatite. J Non-Cryst Solids. 2011;357:1118–29.

    Article  CAS  Google Scholar 

  26. Kuchi R, Dongquoc V, Van PC, Kim D, Jeong J-R. Synthesis of porous Fe3O4-SnO2 core-void-shell nanocomposites as high-performance microwave absorbers. J Environ Chem Eng. 2021;9:106585.

    Article  CAS  Google Scholar 

  27. Godwin J, Njimou JR, Nasalam A-S, Panda PK, Tripathy BC, Ghosh MK, et al. Nanoscale ZnO-adsorbents carefully designed for the kinetic and thermodynamic studies of Rhodamine B. Inorg Chem Commun. 2022;138:109287.

    Article  CAS  Google Scholar 

  28. Njimou JR, Kouatchie FN, Njungab E, Talla A, Elambo Nkeng G. Treatment of agro-food wastewaters and valuable compounds recovery by column sorption runs. Sorption in 2020s, George Kyzas and Nikolaos Lazaridis, IntechOpen, https://doi.org/10.5772/intechopen.90087

  29. Sieugaing Tamwa M, Njimou JR, Nguelo BB, Nanseu-Njiki CP, Vunain E, Tripathy BC, Ngameni E. Electrochemical sensor based on green-synthesized iron oxide nanomaterial modified carbon paste electrode for Congo red electroanalysis and capacitance performance. Mater Res Innov. 2022;27(4):243–52. https://doi.org/10.1080/14328917.2022.2125694.

    Article  CAS  Google Scholar 

  30. John G, Abdus-Salam N, Adegoke IH, Njimou JR, Akor EJ, Etong ID, et al. Two step fabrication of nano-ZnO-α-FeOOH composite for experimental and modeling studies of removal of indigo carmine and alizarin red S in batch process. Chem Afr. 2022;1–15.

  31. Nalwa K, Thakur A, Sharma N. Synthesis of ZnO nanoparticles and its application in adsorption. Adv Mater Proc. 2021;2:697–703.

    Article  Google Scholar 

  32. Godwin J, Njimou JR, Nasalam A-S, Panda PK, Tripathy BC, Ghosh MK, et al. Nanoscale ZnO-adsorbents carefully designed for the kinetic and thermodynamic studies of Rhodamine B. Inorg Chem Commun. 2022;138:109287.

    Article  CAS  Google Scholar 

  33. Prasad K, Jha AK. ZnO nanoparticles: synthesis and adsorption study. Nat Sci. 2009;1:129.

    CAS  Google Scholar 

  34. Azizi S, Mahdavi Shahri M, Mohamad R. Green synthesis of zinc oxide nanoparticles for enhanced adsorption of Lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Mol Basel Switz. 2017;22:831.

    Google Scholar 

  35. Yuvaraja G, Prasad C, Vijaya Y, Subbaiah MV. Application of ZnO nanorods as an adsorbent material for the removal of As(III) from aqueous solution: kinetics, isotherms and thermodynamic studies. Int J Ind Chem. 2018;9:17–25.

    Article  CAS  Google Scholar 

  36. Zhang F, Lan J, Yang Y, Wei T, Tan R, Song W. Adsorption behavior and mechanism of methyl blue on zinc oxide nanoparticles. J Nanoparticle Res. 2013;15:1–10.

    Article  Google Scholar 

  37. Hasanpour A, Niyaifar M, Asan M, Amighian J. Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol–gelmethod. J Magn Magn Mater. 2013;334:41–4.

    Article  CAS  Google Scholar 

  38. Pandey N, Shukla SK, Singh NB. Zinc oxide-urea formaldehyde nanocomposite film as low-cost adsorbent for removal of Cu (II) from aqueous solution. Adv Mater Lett. 2015;6:172–8.

    Article  CAS  Google Scholar 

  39. Ghanbariasad A, Taghizadeh S-M, Show PL, Nomanbhay S, Berenjian A, Ghasemi Y, et al. Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from Chlorella vulgaris microalgae. Bioengineered. 2019;10:390–6.

    Article  CAS  Google Scholar 

  40. Jurkin T, Štefanić G, Dražić G, Gotić M. Synthesis route to δ-FeOOH nanodiscs. Mater Lett. 2016;173:55–9.

    Article  CAS  Google Scholar 

  41. Marinho JZ, Montes RHO, De Moura AP, Longo E, Varela JA, Munoz RAA, et al. Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors. Mater Res Bull. 2014;49:572–6.

    Article  CAS  Google Scholar 

  42. Sun M, Senthil RA, Pan J, Osman S, Khan A. A facile synthesis of visible-light driven rod-on-rod like α-FeOOH/α-AgVO3 nanocomposite as greatly enhanced photocatalyst for degradation of rhodamine B. Catalysts. 2018;8:392.

    Article  Google Scholar 

  43. Khayat Sarkar Z, Khayat SF. Selective removal of lead (II) ion from wastewater using superparamagnetic monodispersed iron oxide (Fe3O4) nanoparticles as a effective adsorbent. Int J Nanosci Nanotechnol. 2013;9:109–14.

    Google Scholar 

  44. Nangah C, Merlain T, Nsami N, Tubwoh C, Mbadcam K, Dodoo-Arhin D. Synthesis and Characterization of Goethite Nanostructured powder: Application in the Simultaneous Removal of Co(II) and Ni(II) Ions from Aqueous Solution. MRSAdv. 2018;3(42–43):2675–87. https://doi.org/10.1557/adv.2018.527.

    Article  CAS  Google Scholar 

  45. Jinadasa KBPN, Dissanayake CB, Weerasooriya SVR. Sorption of toxic metals on goethite: study of cadmium, lead and chromium. Int J Environ Stud. 1995;48(1):7–16. https://doi.org/10.1080/00207239508710972.

    Article  Google Scholar 

  46. Godwin J, Abdus-Salam N, Haleemat AI, Panda PK, Panda J, Tripathy BC. Facile synthesis of rod-like α-FeOOH nanoparticles adsorbent and its mechanism of sorption of Pb (II) and indigo carmine in batch operation. Inorg Chem Commun. 2022;140:109346.

    Article  CAS  Google Scholar 

  47. Ge Y, Cui X, Liao C, Li Z. Facile fabrication of green geopolymer/alginate hybrid spheres for efficient removal of Cu(II) in water: batch and column studies. Chem Eng J. 2017;311:126–34.

    Article  CAS  Google Scholar 

  48. Godwin J, Abdus-Salam N, Haleemat AI, Bello MO, Inyang ED, Alkali MI, et al. High performance nanohybrid ZnO-α-FeOOH nanocomposite prepared for toxic metal ions removal from wastewater: combined sorption and desorption studies. Inorg Chem Commun. 2022;145:109900.

    Article  CAS  Google Scholar 

  49. Kaneti YV, Zakaria QMD, Zhang Z, Chen C, Yue J, Liu M, et al. Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A. 2014;2:13283–92.

    Article  CAS  Google Scholar 

  50. Ghaedi M, Ahmadi F, Shokrollahi A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater. 2007;142:272–8.

    Article  CAS  Google Scholar 

  51. Massoudinejad M, Mohammadi A, Sadeghi S, Ghaderpoori M, Sahebi S, Alinejad A. Arsenic adsorption over dodecahedra ZIF-8 from solution aqueous: modelling, isotherms, kinetics and thermodynamics. Int J Environ Anal Chem. 2022;102:855–71.

    Article  CAS  Google Scholar 

  52. Zhou C, Wang X, Wang Y, Song X, Fang D, Ge S. The sorption of single- and multi-heavy metals in aqueous solution using enhanced nano-hydroxyapatite assisted with ultrasonic. J Environ Chem Eng. 2021;9:105240.

    Article  CAS  Google Scholar 

  53. Li L, Liu F, Jing X, Ling P, Li A. Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: isotherm and kinetic modeling. Water Res. 2011;45:1177–88.

    Article  CAS  Google Scholar 

  54. Girish CR. Various isotherm models for multi-components adsorption: a review. Int J Civ Eng Technol. 2017;8(10):80–6.

    Google Scholar 

  55. Zhou Y, Liu F, Yu S. Preparation and photo-catalytic activities of FeOOH/ZnO/MMT composite. Appl Surf Sci. 2015;355:861–7.

    Article  CAS  Google Scholar 

  56. Lu P-J, Chang C-S, Chern J-M. Binary adsorption breakthrough curves in fixed bed: experiment and prediction. J Taiwan Inst Chem Eng. 2014;45:1608–17.

    Article  CAS  Google Scholar 

  57. Choy KKH, Porter JF, McKay G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J Chem Eng Data. 2000;45:575–84.

    Article  CAS  Google Scholar 

  58. Khajavian M, Wood DA, Hallajsani A, Majidian N. Simultaneous biosorption of nickel and cadmium by the brown algae cystoseria indica characterized by isotherm and kinetic models. Appl Biol Chem. 2019;62:69.

    Article  Google Scholar 

  59. Adenekan AE, Patzek TW, Pruess K. Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation. Water Resour Res. 1993;29(11):3727–40. https://doi.org/10.1029/93WR01957.

    Article  CAS  Google Scholar 

  60. Njimou JR, Pengou M, Kouamo HT, Tamwa MS, Tizaoui C, Fannang U, et al. Removal of lead ions from aqueous solution by phosphate‐based geopolymer cement composite. J Chem Technol Biotechnol. 96:1358–1369. wileyonlinelibrary.com https://doi.org/10.1002/jctb.6657

  61. Ulya HN, Taufiq A. Comparative structural properties of nanosized ZnO/Fe3O4 composites prepared by sonochemical and Sol-Gel methods. IOP Conf Ser: Earth Environ Sci. 2019;276(1):012059. https://doi.org/10.1088/1755-1315/276/1/012059.

  62. ALOthma ZA. A review: fundamental aspects of silicate mesoporous materials. Materials. 2012; 5:2874–902.

  63. Anirudhan TS, Suchithra PS. Equilibrium, kinetics and thermodynamic modelling for the adfosrption of heavy metals onto chemically modified hydrotalcite. Indian J Chem Technol. 2012;17:247–59.

    Google Scholar 

  64. Atun G, Acar ET. Competitive adsorption of basic dyes onto calcite in single and binary component systems. Sep Sci Technol. 2010;45:1471–81.

    Article  CAS  Google Scholar 

  65. Ayawei N, Ebelegi AN, Wankasi D. Modelling and interpretation of adsorption isotherms. J Chem. 2017;2017:11. https://doi.org/10.1155/2017/3039817.

    Article  CAS  Google Scholar 

  66. Sotelo JL, Ovejero G, Rodríguez A, Álvarez S, Galán J, García J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J. 2014;240:443–53.

    Article  CAS  Google Scholar 

  67. Carreon-Alvarez A, Herrera-Gonzalez A, Casillas N, Prado-Ramirez R, Estarron-Espinosa M, Soto V, et al. Cu (II) removal from tequila using an ion-exchange resin. Food Chem. 2011;127:1503–9.

    Article  CAS  Google Scholar 

  68. Mobasherpour I, Salahi E, Pazouki M. Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study. Arab J Chem. 2012;5:439–46.

    Article  CAS  Google Scholar 

  69. Mohan D, Pittman CU Jr. Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater. 2007;142:1–53.

    Article  CAS  Google Scholar 

  70. Khajavian M, Wood DA, Hallajsani A, Majidian N. Simultaneous biosorption of nickel and cadmium by the brown algae cystoseria indica characterized by isotherm and kinetic models. Appl Biol Chem. 2019;62:1–12.

    Article  Google Scholar 

  71. Abdullah LC, Muhammad SSJ, Choong TS. Modelling of single and binary adsorptions of heavy metals onto activated carbon-equilibrium studies. Pertanika J Sci TechnolUniversiti Putra Malays Press. 2010;18:83–93.

    Google Scholar 

  72. Hilbrandt I, Lehmann V, Zietzschmann F, Ruhl AS, Jekel M. Quantification and isotherm modelling of competitive phosphate and silicate adsorption onto micro-sized granular ferric hydroxide. RSC Adv. 2019;9:23642–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. John Godwin thanks the World Academy of Science (TWAS), and CSIR-Institute of Minerals and Materials Technology (CSIR-IMMT), India, for the Doctoral Fellowship award.

Dr. Jacques R. Njimou thanks the Indian National Science Academy for the ‘INSA–JRD TATA Fellowship No: DO/CCSTDS/113/2019. He is also grateful for the SEM MRI award Number:1827176and Fulbright grant PS00301505 that offered data sharing between the University of Ngaoundere and Indiana University of Pennsylvania.

We thank Prof. S. Basu, the Director of CSIR-IMMT, and Prof. Bankim C. Tripathy for hosting, supervising, and for the opportunity of data sharing between IMMT, University of Ilorin, Nigeria, and the University of Ngaoundere, Cameron.

Author information

Authors and Affiliations

Authors

Contributions

John Godwin, Jacques R. Njimou: Conceptualization, Methodology, Investigation, Formal analysis, Visualization, Writing original draft, Review & editing.

Nasalam Abdus-Salam: Conceptualization, Supervision, Investigation, Formal analysis.

Prasanna Kumar Panda: Data curation, Review & editing.

Haleemat Iyabode Adegoke: Formal analysis, Methodology, Data curation.

Bankim C. Tripathy: Investigation, Project administration, Supervision.

Sanda Andrada Maicaneanu: Supervision Methodology, Review & editing.

Corresponding author

Correspondence to Jacques Romain Njimou.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godwin, J., Njimou, J.R., Abdus-Salam, N. et al. Nanosorbent based on coprecipitation of ZnO in goethite for competitive sorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) systems. J Environ Health Sci Engineer (2023). https://doi.org/10.1007/s40201-023-00882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-023-00882-x

Keywords

Navigation