Skip to main content

Advertisement

Log in

Solid-State Diffusion Bonding of NbSS/Nb5Si3 Composite Using Ni/Al and Ti/Al Nanolayers

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Diffusion bonding of refractory Nb–Si-based alloy was performed with Ni/Al and Ti/Al nanolayers under the condition of 1473 K/30 MPa/60 min. The NbSS/Nb5Si3 in situ composite with the nominal composition of Nb–22Ti–16Si–3Cr–3Al–2Hf was used as the parent material. The joint microstructures were examined by using a scanning electron microscope equipped with an X-ray energy dispersive spectrometer. Shear test was conducted for the bonded joints at room temperature. Within the joint bonded with Ni/Al multilayer, element diffusion occurred between the base metal and the nanolayer, with the reaction products of AlNb2 + Ni3Al, NiAl and AlNi2Ti phases. The average shear strength was 182 MPa. While using Ti/Al multilayer, the interface mainly consisted of TiAl, (Ti,Nb)Al and (Ti,Nb)2Al phases, and the corresponding joints exhibited an increased strength of 228 MPa. In this case, the fracture mainly took place in the TiAl phase and presented a typical brittle characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.P. Bewlay, M.R. Jackson, P.R. Subramanian, J.C. Zhao, Metall. Mater. Trans. A 34, 2043 (2003)

    Article  Google Scholar 

  2. R.C. Reed, The Superalloys: Fundamentals an Applications (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  3. Y. Zhang, Q. Wang, H.G. Dong, C. Dong, H.Y. Zhang, X.F. Sun, Acta Metall. Sin. (Engl. Lett.) 34, 127 (2018)

    Article  Google Scholar 

  4. Y.W. Kang, S. Qu, J. Song, Q. Huang, Y. Han, Mater. Sci. Eng. A 534, 323 (2012)

    Article  Google Scholar 

  5. B.P. Bewlay, J.J. Lewandowksi, M.R. Jackson, JOM 49, 44 (1997)

    Article  Google Scholar 

  6. J.C. Zhao, M.R. Jackson, L.A. Peluso, Acta Mater. 51, 6395 (2003)

    Article  Google Scholar 

  7. W. Liu, H.P. Xiong, N. Li, S.Q. Guo, R.Y. Qin, Acta Metall. Sin. (Engl. Lett.) 4, 362 (2018)

    Article  Google Scholar 

  8. W.Y. Kim, H. Tanaka, A. Kasama, S. Hanada, Intermetallics 9, 827 (2001)

    Article  Google Scholar 

  9. Y. Kimura, Y. Mishima, H. Yamaoka, N. Sekido, Metall. Mater. Trans. A 36, 483 (2005)

    Article  Google Scholar 

  10. Y. Yan, H. Ding, Y. Kang, J. Song, Mater. Des. 55, 450 (2014)

    Article  Google Scholar 

  11. Z. Li, L.M. Peng, Acta Mater. 55, 6573 (2007)

    Article  Google Scholar 

  12. J. Sha, C. Yang, J. Liu, Scr. Mater. 62, 859 (2010)

    Article  Google Scholar 

  13. Y.L. Guo, L.N. Jia, H.R. Zhang, B. Kong, Y.L. Huang, H. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 742 (2018)

    Article  Google Scholar 

  14. J.H. Kim, T. Tabaru, H. Hirai, A. Kitahara, S. Hanada, Scr. Mater. 48, 1439 (2003)

    Article  Google Scholar 

  15. W. Liu, Y.M. Fu, J.B. Sha, Metall. Mater. Trans. A 44, 2319 (2013)

    Article  Google Scholar 

  16. H. Somekawa, H. Watanabe, T. Mukai, K. Higashi, Scr. Mater. 48, 1249 (2003)

    Article  Google Scholar 

  17. F. Li, J. Li, H. Kou, L. Zhou, J. Mater. Sci. Technol. 32, 937 (2016)

    Article  Google Scholar 

  18. S. Simões, F. Viana, V. Ventzke, M. Koçak, A.S. Ramos, M.T. Vieira, M.F. Vieira, J. Mater. Sci. 45, 4351 (2010)

    Article  Google Scholar 

  19. D. Faghihi, G.Z. Voyiadjis, Mech. Mater. 44, 189 (2012)

    Article  Google Scholar 

  20. R.P. Dhote, R.V.N. Melnik, J. Zu, Comput. Mater. Sci. 63, 105 (2012)

    Article  Google Scholar 

  21. X. Zhang, J.H. Sui, Y.C. Lei, W. Cai, Acta Metall. Sin. (Engl. Lett.) 30, 1 (2017)

    Article  Google Scholar 

  22. C. Li, W. Yang, Q. Li, J. Mater. Sci. Technol. 34, 969 (2018)

    Article  Google Scholar 

  23. V.Y. Rudyak, S.N. Dubtsov, A.M. Baklanov, Tech. Phys. Lett. 34, 519 (2008)

    Article  Google Scholar 

  24. L.I. Duarte, A.S. Ramos, M.F. Vieira, F. Viana, M.T. Vieira, M. Koçak, Intermetallics 14, 1151 (2006)

    Article  Google Scholar 

  25. A.I. Ustinov, Y.V. Falchenko, A.Y. Ishchenko, G.K. Kharchenko, T.V. Melnichenko, A.N. Muraveynik, Intermetallics 16, 1043 (2008)

    Article  Google Scholar 

  26. W.Y. Kim, I.D. Yeo, M.S. Kim, S. Hanada, Mater. Trans. 43, 3254 (2002)

    Article  Google Scholar 

  27. J. Wang, X.P. Guo, J.M. Guo, Chin. J. Aeronaut. 22, 544 (2009)

    Article  Google Scholar 

  28. S. Simões, F. Viana, M. Kocak, A.S. Ramos, M.T. Vieira, M.F. Vieira, Mater. Chem. Phys. 128, 202 (2011)

    Article  Google Scholar 

  29. A.R. Miedema, F.R. De Boer, R. Boom, Calphad 1, 341 (1977)

    Article  Google Scholar 

  30. X. Ma, X.P. Guo, M.S. Fu, H.S. Guo, Scr. Mater. 139, 108 (2017)

    Article  Google Scholar 

  31. J.L. Yu, X.D. Weng, N.L. Zhu, H. Liu, F. Wang, Y.C. Li, X.M. Cai, Z.W. Hu, Intermetallics 90, 135 (2017)

    Article  Google Scholar 

  32. S. Simões, F. Viana, M. Koçak, A.S. Ramos, M.T. Viera, M.F. Vieira, J. Mater. Eng. Perform. 21, 678 (2012)

    Article  Google Scholar 

  33. S.K. Pabi, J. Joardar, I. Manna, B.S. Murty, Nanostruct. Mater. 9, 149 (1997)

    Article  Google Scholar 

  34. R. Shiue, S. Wu, Gold Bull. 39, 200 (2006)

    Article  Google Scholar 

  35. Y.G. Miao, B.S. Zhang, B.T. Wu, X.X. Wang, G.Y. Chen, D.F. Han, Acta Metall. Sin. (Engl. Lett.) 29, 156 (2016)

    Article  Google Scholar 

  36. H.S. Ren, H.P. Xiong, B. Chen, S.J. Pang, B.Q. Chen, L. Ye, J. Mater. Sci. Technol. 32, 372 (2016)

    Article  Google Scholar 

  37. Y. Wang, X.Q. Cai, Z.W. Yang, D.P. Wang, X.G. Liu, Y.C. Liu, J. Mater. Sci. Technol. 33, 682 (2017)

    Article  Google Scholar 

  38. H.P. Xiong, Q. Shen, J.G. Li, L.M. Zhang, R.Z. Yuan, J. Mater. Sci. Lett. 19, 989 (2000)

    Article  Google Scholar 

  39. X.Q. Li, L. Li, K. Hu, S.Q. Qu, Intermetallics 57, 7 (2015)

    Article  Google Scholar 

  40. A. Hellwig, M. Palm, G. Inden, Intermetallics 6, 79 (1998)

    Article  Google Scholar 

  41. M. Göken, M. Kempf, W.D. Nix, Acta Mater. 49, 903 (2001)

    Article  Google Scholar 

  42. N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, J. Mater. Sci. Technol. 35, 242 (2019)

    Article  Google Scholar 

  43. O. Politano, F. Baras, A.S. Mukasyan, S.G. Vadchenko, A.S. Rogachev, Surf. Coat. Technol. 215, 485 (2013)

Download references

Acknowledgements

This work was financially supported by the Beijing Municipal Science & Technology Commission (No. Z171100002217048) and the National Natural Science Foundation of China (No. 51705489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Ping Xiong.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, XY., Ren, HS., Kang, YW. et al. Solid-State Diffusion Bonding of NbSS/Nb5Si3 Composite Using Ni/Al and Ti/Al Nanolayers. Acta Metall. Sin. (Engl. Lett.) 32, 1142–1150 (2019). https://doi.org/10.1007/s40195-019-00906-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00906-2

Keywords

Navigation