Skip to main content
Log in

A review of very-high-temperature Nb-silicide-based composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperatures of airfoil surfaces in advanced turbine engines are approaching the limits of nickel-based superalloys. Innovations in refractory metal-intermetallic composites (RMICs) are being pursued, with particular emphasis on systems based on Nb-Si and Mo-Si-B alloys. These systems have the potential for service at surface temperatures >1350 °C. The present article will review the most recent progress in the development of Nb-silicide-based in-situ composites for very-high-temperature applications. Nb-silicide-based composites contain high-strength silicides that are toughened by a ductile Nb-based solid solution. Simple composites are based on binary Nb-Si alloys; more complex systems are alloyed with Ti, Hf, Cr, and Al. In higher-order silicide-based systems, alloying elements have been added to stabilize intermetallics, such as Laves phases, for additional oxidation resistance. Alloying schemes have been developed to achieve an excellent balance of room-temperature toughness, high-temperature creep performance, and oxidation resistance. Recent progress in the development of composite processing-structure-property relationships in Nb-silicide-based in-situ composites will be described, with emphasis on rupture resistance and oxidation performance. The Nb-silicide composite properties will be compared with those of advanced Ni-based superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Buckman, Jr.: Alloying, ASM, Metals Park, OH, 1988, pp. 419–45.

    Google Scholar 

  2. P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, and M.A. Stucke: Mater. Sci. Eng., 1997, vols. A239-A240, pp. 1–13.

    Google Scholar 

  3. B.P. Bewlay, M.R. Jackson, and M.F.X. Gigliotti: in Intermetallic Compounds—Principles and Practice—Vol. 3, R.L. Fleischer and J.H. Westbrook, eds.; John Wiley, New York, NY, 2001, pp. 541–60.

    Google Scholar 

  4. D.M. Berczik: United Technologies Corporation, U.S. Patent 05693156, 1997; United Technologies Corporation, U.S. Patent 05595616, 1997, East Hartford, CT.

  5. J.H. Schneibel, M.J. Kramer, O. Unal, and R.N. Wright: Intermetallics, 2001, vol. 9, pp. 25–31.

    Article  CAS  Google Scholar 

  6. M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk: Metall. Trans. A, 1991, vol. 22A, pp. 1573–81.

    CAS  Google Scholar 

  7. M.G. Mendiratta and D.M. Dimiduk: Metall Trans. A, 1993, vol. 24A, pp. 501–04.

    CAS  Google Scholar 

  8. P.R. Subramanian, M.G. Mendiratta, and D.M. Dimiduk: J. Met., 1996, vol. 48(1), pp. 33–38.

    CAS  Google Scholar 

  9. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A., 1996, vol. 27A, pp. 3801–08.

    Article  CAS  Google Scholar 

  10. B.P. Bewlay, M.R. Jackson, and P.R. Subramanian: JOM, 1999, vol. 51, pp. 32–36.

    CAS  Google Scholar 

  11. B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson: JOM, 1997, vol. 49, pp. 46–48.

    Google Scholar 

  12. J.D. Rigney and J.J. Lewandowski: Metall. Trans. A, 1996, vol. 27A, pp. 3292–306.

    CAS  Google Scholar 

  13. H. Choe, D. Chen, J.H. Schneibel, and R.O. Ritchie: Intermetallics, 2001, vol. 9, pp. 319–29.

    Article  CAS  Google Scholar 

  14. W.A. Zinsser and J.J. Lewandowski: Metall. Trans. A, 1998, vol. 29A, pp. 1749–57.

    Article  CAS  Google Scholar 

  15. J.H. Perepezko, R. Sakidja, and S. Kim: Proc. High Temperature Ordered Intermetallic Alloys IX, 2001, vol. 646, pp. N4.5.1-N4.5.12.

    CAS  Google Scholar 

  16. S.J. Balsone, B.P. Bewlay, and M.R. Jackson, P.R. Subramanian, J.-C. Zhao, A. Chatterjee, and T.M. Hefferman: Proc. 2001 ISSI Conf., K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., 2001, pp. 99–108.

  17. C.L. Ma, H. Tanaka, A. Kasama, R. Tanaka, Y. Mishima, and S. Hanada: Proc. High Temperature Ordered Intermetallic Alloys IX, 2001, vol. 646, pp. N5.39.1-N5.39.6.

    CAS  Google Scholar 

  18. P.R. Subramanian, T.A. Parthasarathy, M.G. Mendiratta, and D.M. Dimiduk: Scripta Metall., 1995, vol. 32(8), pp. 1227–32.

    Article  Google Scholar 

  19. G.L. Erickson: JOM, 1995, vol. 47, pp. 36–39.

    CAS  Google Scholar 

  20. Ceramic Source, American Ceramic Society, 1991, vol. 7, T131, www.keram.se

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bewlay, B.P., Jackson, M.R., Subramanian, P.R. et al. A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans A 34, 2043–2052 (2003). https://doi.org/10.1007/s11661-003-0269-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0269-8

Keywords

Navigation