Skip to main content

Preparation, crystallization, microstructure and dielectric properties of lead bismuth titanate borosilicate glass ceramics


Various bulk and transparent glasses were prepared by rapid melt quenching technique in the glass system 55[(Pb x Bi1−x)TiO3]-44[2SiO2B2O3]-La2O3 (x = 0–0.7). The X-ray diffraction (XRD) studies of the glass samples confirmed the amorphous nature. The differential thermal analyses (DTA) were carried out from room temperature to 900 °C with a heating rate of 10 °C/min. The DTA patterns of the samples showed one or more exothermic sharp peaks shifting towards lower temperature side with increasing concentration of bismuth oxide (BiO). On the basis of DTA results, the solid solution of bismuth titanum oxide (Bi2Ti2O7)/lead bismuth titanium oxide (Pb3Bi4Ti6O21) was precipitated in borosilicate glassy matrix as a major phase. The glasses were subjected to 4 h and 8 h heat treatment schedules to convert into glass ceramics. XRD analysis of these glass ceramic samples showed that the major crystalline phase of the entire glass ceramic samples with 0 ≤ x ≤ 0.5 is found to have cubic crystal structure, while it is tetragonal for glass ceramic sample with x = 0.7. The scanning electron microscopy (SEM) micrographs indicated the uniform distribution of Bi2Ti2O7 and Pb3Bi4Ti6O21 crystallites in the glassy matrix.


  1. [1]

    Aurivillius B. Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12. Arkiv for Kemi 1949, 1: 499–512.

    Google Scholar 

  2. [2]

    Murugan GS, Subbanna GN, Varma KBR. Nanocrystallization of ferroelectrics bismuth tungstate in lithium borate glass matrix. J Mater Sci Lett 1999, 18: 1687–1690.

    Article  Google Scholar 

  3. [3]

    Borrelli NF, Layton MM. Electrooptic properties of transparent ferroelectric glass-ceramic systems. IEEE T Electron Dev 1969, 16: 511–514.

    Article  Google Scholar 

  4. [4]

    Bell AJ. Ferroelectrics: The role of ceramic science and engineering. J Eur Ceram Soc 2008, 28: 1307–1317.

    Article  Google Scholar 

  5. [5]

    Pengpat K, Holland D. Ferroelectric glass-ceramics from the PbO-GeO2-Nb2O5 system. J Eur Ceram Soc 2004, 24: 2951–2958.

    Article  Google Scholar 

  6. [6]

    Graça MPF, da Silva MGF, Valente MA. Structural and electrical properties of SiO2-Li2O-Nb2O5 glass and glass-ceramics obtained by thermoelectric treatments. J Mater Sci 2007, 42: 2543–2550.

    Article  Google Scholar 

  7. [7]

    Graça MPF, Valente MA, da Silva MGF. The electric behavior of a lithium-niobate-phosphate glass and glass-ceramics. J Mater Sci 2006, 41: 1137–1141.

    Article  Google Scholar 

  8. [8]

    Shankar MV, Varma KBR. Crystallization of ferroelectric bismuth vanadate in Bi2O3-V2O5-SrB4O7 glasses. J Non-Cryst Solids 1998, 226: 145–154.

    Article  Google Scholar 

  9. [9]

    Pengpat K, Holland D. Glass-ceramics containing ferroelectric bismuth germanate (Bi2GeO5). J Eur Ceram Soc 2003, 23: 1599–1607.

    Article  Google Scholar 

  10. [10]

    Ruiz-Valdés JJ, Gorokhovsky AV, Escalante-García JI, et al. Glass-ceramic materials with regulated dielectric properties based on the system BaO-PbO-TiO2-B2O3-Al2O3. J Eur Ceram Soc 2004, 24: 1505–1508.

    Article  Google Scholar 

  11. [11]

    Bengisu M, Brow RK, Wittenauer A. Glasses and glass-ceramics in the SrO-TiO2-Al2O3-SiO2-B2O3 system and the effect of P2O5 additions. J Mater Sci 2008, 43: 3531–3538.

    Article  Google Scholar 

  12. [12]

    Subbarao EC. A family of ferroelectric bismuth compounds. J Phys Chem Solids 1962, 23: 665–676.

    Article  Google Scholar 

  13. [13]

    De Araujo CA, Cuchiaro J, Mcmillan LD, et al. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1994, 374: 627–629.

    Article  Google Scholar 

  14. [14]

    Park BH, Kang BS, Bu SD, et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999, 401: 682–684.

    Article  Google Scholar 

  15. [15]

    Takenaka T, Nagata H. Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 2005, 25: 2693–2700.

    Article  Google Scholar 

  16. [16]

    Kojima S, Hushur A, Jiang F, et al. Crystallization of amorphous bismuth titanate. J Non-Cryst Solids 2001, 293–295: 250–254.

    Article  Google Scholar 

  17. [17]

    Sunahara K, Yano J, Kakegawa K. Preparation of Bi4Ti3O12 particles by crystallization from glass. J Eur Ceram Soc 2006, 26: 623–626.

    Article  Google Scholar 

  18. [18]

    Gerth K, Rüssel C. Crystallization of Bi4Ti3O12 from glasses in the system Bi2O3/TiO2/B2O3. J Non-Cryst Solids 1997, 221: 10–17.

    Article  Google Scholar 

  19. [19]

    Bruton TM. Study of the liquidus in the system Bi2O3-TiO2. J Solid State Chem 1974, 9: 173–175.

    Article  Google Scholar 

  20. [20]

    Gerth K, Rüssel C. Crystallization of Bi3TiNbO9 from glasses in the system Bi2O3/TiO2/Nb2O5/B2O3/SiO2. J Non-Cryst Solids 1999, 243: 52–60.

    Article  Google Scholar 

  21. [21]

    Krapchanska M, Dimitriev Y, Iordanova R. Phase formation in the system Bi2O3-TiO2-SiO2. Journal of the University of Chemical Technology and Metallurgy 2006, 41: 307–310.

    Google Scholar 

  22. [22]

    Tang Q-Y, Kan Y-M, Wang P-L, et al. Nd/V co-doped Bi4Ti3O12 power prepared by molten salt synthesis. J Am Ceram Soc 2007, 90: 3353–3356.

    Article  Google Scholar 

  23. [23]

    Kojima T, Sakai T, Watanabe T, et al. Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition. Appl Phys Lett 2002, 80: 2746.

    Article  Google Scholar 

  24. [24]

    Kim JK, Kim SS, Kim W-J. Effects of annealing conditions on the electrical properties of Bi4−xNdxTi3O12 (x = 0.46) thin films processed at low temperature. Appl Phys A 2006, 82: 737–740.

    Article  Google Scholar 

  25. [25]

    Sakamoto W, Yamada M, Iizawa N, et al. Preparation and properties of Bi4−xNdxTi3O12 thin films by chemical solution deposition. J Electroceram 2004, 13: 339–343.

    Article  Google Scholar 

  26. [26]

    Wu D, Li A, Ming N. Structure and electrical properties of of Bi3.15Nd0.85Ti3O12 ferroelectric thin films. J Appl Phys 2004, 95: 4275.

    Article  Google Scholar 

  27. [27]

    Maiwa H, Iizawa N, Togawa D, et al. Electromechanical properties of Nd-doped Bi4Ti3O12 films: A candidate for lead-free thin-film piezoelectics. Appl Phys Lett 2003, 82: 1760–1762.

    Article  Google Scholar 

  28. [28]

    Suyal G, Bharadwaja SSN, Cantoni M, et al. Properties of chemical solution deposited polycrystalline neobidium-modified Bi4Ti3O12. J Electroceram 2002, 9: 187–192.

    Article  Google Scholar 

  29. [29]

    Gao XS, Xue JM, Wang J. Ferroelectric behavior and charge carriers in Nd-doped Bi4Ti3O12 thin films. J Appl Phys 2005, 97: 034101.

    Article  Google Scholar 

  30. [30]

    Chen M, Liu ZL, Wang Y, et al. Ferroelectric properties and microstructures of Nd2O3-doped Bi4Ti3O12 ceramics. Phys Status Solidi a 2003, 200: 446–450.

    Article  Google Scholar 

  31. [31]

    Vernacotala DE, Chatlani S, Shelby JE. Applications of ferroelectrics. Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectric. Honolulu, Hawaii, USA, 2000.

    Google Scholar 

  32. [32]

    Shankar MV, Varma KBR. Crystallization, dielectric and optical studies on strontium tetraborate glasses containing bismuth titanate. Mater Res Bull 1998, 33: 1769–1782.

    Article  Google Scholar 

  33. [33]

    Molla AR, Tarafder A, Karmakar B. Synthesis and properties of glasses in the K2O-SiO2-Bi2O3-TiO2 system and bismuth titanate (Bi4Ti3O12) nano glass-ceramics thereof. J Mater Sci 2011, 46: 2967–2976.

    Article  Google Scholar 

  34. [34]

    Golezardi S, Marghussian VK, Beitollahi A, et al. Crystallization behavior, microstructure and dielectric properties of lead titanate glass ceramics in the presence of Bi2O3 as a nucleating agent. J Eur Ceram Soc 2010, 30: 1453–1460.

    Article  Google Scholar 

  35. [35]

    Reddy AA, Tulyaganov DU, Kapoor S, et al. Study of melilite based glasses and glass-ceramics nucleated by Bi2O3 for functional applications. RSC Adv 2012, 2: 10955–10967.

    Article  Google Scholar 

  36. [36]

    El-Meliegy E, van Noort R. Glasses and Glass Ceramics for Medical Applications. New York: Springer, 2012.

    Book  Google Scholar 

  37. [37]

    Gautam CR, Kumar D, Parkash O. Controlled crystallization of (Pb,Sr)TiO3 borosilicate glass ceramics doped with Nb2O5. Glass Phys Chem+ 2013, 39: 162–173.

    Article  Google Scholar 

  38. [38]

    Gautam CR, Kumar D, Parkash O. Crystallization behavior and microstructural analysis of lead-rich (PbxSr1−x)TiO3 glass ceramics containing 1 mole% La2O3. Advances in Materials Science and Engineering 2011, 2011: 402376.

    Google Scholar 

  39. [39]

    Gautam CR, Kumar D, Parkash O. Crystallization behavior and microstructural analysis of strontium-rich (PbxSr1−x)TiO3 glass ceramics in presence of La2O3. Advances in Materials Science and Engineering 2011, 2011: 747346.

    Google Scholar 

  40. [40]

    Gautam CR, Yadav AK, Singh P. Synthesis, crystallization and microstructural study of perovskite (Ba,Sr)TiO3 borosilicate glass ceramic doped with La2O3. Mater Res Innov 2013, 17: 148–153.

    Article  Google Scholar 

  41. [41]

    Patterson AL. The Scherrer formula for X-ray particle size determination. Phys Rev 1939, 56: 978–982.

    Article  Google Scholar 

  42. [42]

    Sahu AK, Kumar D, Parkash O. Crystallization of lead strontium titanate perovskite phase in [(Pb1−xSrx)O·TiO2]-[2SiO2·B2O3]-[K2O] glass ceramics. Adv Appl Ceram 2003, 102: 139–147

    Google Scholar 

  43. [43]

    Bahramia A, Nemati ZA, Alizadeh P, et al. Crystallization and electrical properties of [(Pb1−xSrx)·TiO3][(2SiO2·B2O3)][K2O] glass-ceramics. J Mater Process Tech 2008, 206: 126–131

    Article  Google Scholar 

  44. [44]

    Kumar D, Gautam CR, Parkash O. Preparation and dielectric characterization of ferroelectric (PbxSr1−x)TiO3 glass ceramics doped with La2O3. Appl Phys Lett 2006, 89: 112908.

    Article  Google Scholar 

  45. [45]

    Gautam CR, Singh P, Thakur OP, et al. Synthesis, structure and impedance spectroscopic analysis of [(PbxSr1−x)·OTiO2]-[(2SiO2·B2O3)]-7[BaO]-3[K2O] glass ceramic system doped with La2O3. J Mater Sci 2012, 47: 6652–6664

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chandkiram R. Gautam.

Additional information

This article is published with open access at

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gautam, C.R., Madheshiya, A. & Mazumder, R. Preparation, crystallization, microstructure and dielectric properties of lead bismuth titanate borosilicate glass ceramics. J Adv Ceram 3, 194–206 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • lead bismuth titanate
  • differential thermal analysis (DTA)
  • crystallization
  • scanning electron microscopy (SEM)
  • dielectric behavior