Skip to main content
Log in

Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass–Ceramics Prepared by Sol–Gel Process

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ferroelectric glass–ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3−10 wt.% (B2O3nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol–gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass–ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal–glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Herczog, IEEE Trans. Parts. Hybrids Packag. PHP-9 4, 247 (1973).

    Article  Google Scholar 

  2. K. Kageyama and J. Takahashi, J. Am. Ceram. Soc. 87, 1602 (2004).

    Article  Google Scholar 

  3. E.P. Gorzkowski, M.J. Pan, B.A. Bender, and C.C.M. Wu, J. Electroceram. 18, 269 (2007).

    Article  Google Scholar 

  4. J.C. Chen, Y. Zhang, C.S. Deng, and X.M. Dai, J. Am. Ceram. Soc. 92, 1350 (2009).

    Article  Google Scholar 

  5. A.K. Yadav, C. Gautam, and P. Singh, New J. Glass Ceram 3, 67 (2012).

    Google Scholar 

  6. P.V. Divya and V. Kumar, J. Am. Ceram. Soc. 90, 472 (2007).

    Article  Google Scholar 

  7. J. Zhu, Y. Zhang, X.Z. Song, Q. Zhang, D.L. Yang, and Y.Z. Chen, Phys. Status Solidi A 212, 2822 (2015).

    Article  Google Scholar 

  8. Q.Y. Pang, Y. Zhang, J. Zhu, X.Z. Song, X.Y. Wang, and Q. Zhang, J. Sol–Gel Sci. Technol. 72, 581 (2014).

    Article  Google Scholar 

  9. J.Y. Wang, X. Yao, and L.Y. Zhang, Ceram. Int. 30, 1749 (2004).

    Article  Google Scholar 

  10. X.R. Wang, Y. Zhang, L. Cui, and I.S. Baturin, Ferroelectrics 442, 109 (2013).

    Article  Google Scholar 

  11. Q.M. Zhang, L. Wang, J. Luo, Q. Tang, and J. Du, J. Am. Ceram. Soc. 92, 1871 (2009).

    Article  Google Scholar 

  12. X.T. Chen and L.X. Gu, J. Mater. Process. Technol. 209, 3931 (2009).

    Article  Google Scholar 

  13. J.Q. Qi, L. Sun, X.W. Qi, Y. Wang, and H.L.W. Chan, J. Solid State Chem. 184, 690 (2011).

    Article  Google Scholar 

  14. L. Delattre, F. Babonneau, C.M. Condensee, and U.M. Curie, Chem. Mater. 9, 2385 (1997).

    Article  Google Scholar 

  15. M.K. Zhu, W.K. Dai, Y.D. Hou, H. Yan, and J.B. Xu, J. Cryst. Growth 285, 117 (2005).

    Article  Google Scholar 

  16. I.C. Popovici and G. Prodan, J. Sol–Gel Sci. Technol. 63, 457 (2012).

    Article  Google Scholar 

  17. K. Yao, L.Y. Zhang, X. Yao, and W.G. Zhu, Mater. Sci. Eng. B 41, 322 (1996).

    Article  Google Scholar 

  18. N.G. Devaraju, B.I. Lee, X.Y. Wang, M. Viviani, and P. Nanni, J. Mater. Sci. 41, 3335 (2006).

    Article  Google Scholar 

  19. W. Li and R.W. Schwartz, Phys. Rev. B. 75, 1 (2007).

    Google Scholar 

  20. D.C. Sinclair and A.R. West, J. Appl. Phys. 66, 3850 (1989).

    Article  Google Scholar 

  21. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994).

    Article  Google Scholar 

  22. M.A.L. Nobre and S. Lanfredi, J. Appl. Phys. 93, 5576 (2003).

    Article  Google Scholar 

  23. F.A. Kroger and H. Vink, Solid State Phys. 3, 307 (1956).

    Article  Google Scholar 

  24. W. Liu and C.A. Randall, J. Am. Ceram. Soc. 91, 3245 (2008).

    Article  Google Scholar 

  25. S.C. Abrahams, Acta Cryst. B 52, 790 (1996).

    Article  Google Scholar 

  26. Q.C. Wang, S.B. Liu, X.M. Wang, H. Fu, J.G. Xu, F.Q. Lu, E. Véron, M. Allix, F. Porcher, and X.J. Kuang, Solid State Ion. 278, 157 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, Y., Song, X. et al. Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass–Ceramics Prepared by Sol–Gel Process. J. Electron. Mater. 47, 4627–4633 (2018). https://doi.org/10.1007/s11664-018-6345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6345-z

Keywords

Navigation