Skip to main content

Advertisement

Log in

Developmental Signaling and Organ Fibrosis

  • Activated Myofibroblasts and Fibrosis in Various Organs (T Kisseleva and Y Liu, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Recent evidence suggests that the developmental signaling pathways—Wnt, Notch, and Hedgehog—are critically involved in organ fibrosis.

Recent Findings

Wnt, Notch, and Hedgehog signaling pathways are reactivated after organ injury and drive pathologic organ fibrosis via myofibroblast differentiation, proliferation, and extracellular matrix production. Strong evidence suggests that inhibition of these pathways might ameliorate fibrosis severity. Some conflicting results point towards highly time- and cell-specific roles of these pathways across major organs.

Summary

Usually quiescent in adult tissue homeostasis, developmental signaling pathways are reactivated after organ injury. Sustained activation of these pathways drives fibrosis and ultimately leads to an irreversible loss of organ function. Understanding the cell-specific role of Wnt, Notch, and Hedgehog signaling in fibrosis will guide the development of novel targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jha V, Garcia-Garcia G, Iseki K et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet Lond Engl 382:260–272. doi:10.1016/S0140-6736(13)60687-X

    Article  Google Scholar 

  2. Tsochatzis EA, Bosch J, Burroughs AK (2014) Liver cirrhosis. Lancet Lond Engl 383:1749–1761. doi:10.1016/S0140-6736(14)60121-5

    Article  Google Scholar 

  3. Brennan D, Chen X, Cheng L et al (2012) Noncanonical Hedgehog signaling. Vitam Horm 88:55–72. doi:10.1016/B978-0-12-394622-5.00003-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jenkins D (2009) Hedgehog signalling: emerging evidence for non-canonical pathways. Cell Signal 21:1023–1034

    Article  CAS  PubMed  Google Scholar 

  5. Ding H, Zhou D, Hao S et al (2012) Sonic Hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol JASN 23:801–813. doi:10.1681/ASN.2011060614

    Article  CAS  PubMed  Google Scholar 

  6. Fabian SL, Penchev RR, St-Jacques B et al (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180:1441–1453. doi:10.1016/j.ajpath.2011.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou D, Li Y, Zhou L et al (2014) Sonic Hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J Am Soc Nephrol JASN 25:2187–2200. doi:10.1681/ASN.2013080893

    Article  CAS  PubMed  Google Scholar 

  8. Bai Y, Lu H, Lin C et al (2016) Sonic Hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis. Int J Mol Med 37:1317–1327. doi:10.3892/ijmm.2016.2546

    CAS  PubMed  Google Scholar 

  9. •• Kramann R, Fleig SV, Schneider RK et al (2015) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125:2935–2951. doi:10.1172/JCI74929 This work demonstrates that Gli2 is a critical driver of myofibroblast expansion in kidney fibrosis and can be targeted pharmacologically. Importantly, inhibition of Gli2 was able not only to ameliorate kidney fibrosis but also to improve organ function following IRI.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rauhauser AA, Ren C, Lu D et al (2015) Hedgehog signaling indirectly affects tubular cell survival after obstructive kidney injury. Am J Physiol Renal Physiol 309:F770–F778. doi:10.1152/ajprenal.00232.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bolaños AL, Milla CM, Lira JC et al (2012) Role of Sonic Hedgehog in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L978–L990. doi:10.1152/ajplung.00184.2012

    Article  PubMed  CAS  Google Scholar 

  12. Cigna N, Farrokhi Moshai E, Brayer S et al (2012) The Hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol 181:2126–2137. doi:10.1016/j.ajpath.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  13. Stewart GA, Hoyne GF, Ahmad SA et al (2003) Expression of the developmental Sonic Hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol 199:488–495. doi:10.1002/path.1295

    Article  CAS  PubMed  Google Scholar 

  14. Hu B, Liu J, Wu Z et al (2015) Reemergence of Hedgehog mediates epithelial-mesenchymal crosstalk in pulmonary fibrosis. Am J Respir Cell Mol Biol 52:418–428. doi:10.1165/rcmb.2014-0108OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moshai EF, Wémeau-Stervinou L, Cigna N et al (2014) Targeting the Hedgehog-glioma-associated oncogene homolog pathway inhibits bleomycin-induced lung fibrosis in mice. Am J Respir Cell Mol Biol 51:11–25. doi:10.1165/rcmb.2013-0154OC

    Article  PubMed  CAS  Google Scholar 

  16. Liang R, Dess C, Palumbo-Zerr K et al (2015) AB0209 Gli-inhibitors simultaneously target canonical and non-canonical Hedgehog pathways and ameliorate the pro-fibrotic effects of transforming growth factor-β. Ann Rheum Dis 74:960–961. doi:10.1136/annrheumdis-2015-eular.5510

    Google Scholar 

  17. Guy CD, Suzuki A, Zdanowicz M et al (2012) Hedgehog pathway activation parallels histologic severity of injury and fibrosis in human nonalcoholic fatty liver disease. Hepatol Baltim Md 55:1711–1721. doi:10.1002/hep.25559

    Article  CAS  Google Scholar 

  18. Jung Y, Brown KD, Witek RP et al (2008) Accumulation of Hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology 134:1532–1543. doi:10.1053/j.gastro.2008.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pereira TA, Witek RP, Syn W-K et al (2010) Viral factors induce Hedgehog pathway activation in humans with viral hepatitis, cirrhosis, and hepatocellular carcinoma. Lab Investig J Tech Methods Pathol 90:1690–1703. doi:10.1038/labinvest.2010.147

  20. Syn W-K, Jung Y, Omenetti A et al (2009) Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology 137:1478–1488.e8. doi:10.1053/j.gastro.2009.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung Y, Witek RP, Syn W-K et al (2010) Signals from dying hepatocytes trigger growth of liver progenitors. Gut 59:655–665. doi:10.1136/gut.2009.204354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choi SS, Omenetti A, Witek RP et al (2009) Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol 297:G1093–G1106. doi:10.1152/ajpgi.00292.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang L, Wang Y, Mao H et al (2008) Sonic Hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol 48:98–106. doi:10.1016/j.jhep.2007.07.032

    Article  CAS  PubMed  Google Scholar 

  24. Michelotti GA, Xie G, Swiderska M et al (2013) Smoothened is a master regulator of adult liver repair. J Clin Invest 123:2380–2394. doi:10.1172/JCI66904

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Philips GM, Chan IS, Swiderska M et al (2011) Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS One 6:e23943. doi:10.1371/journal.pone.0023943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pratap A, Singh S, Mundra V et al (2012) Attenuation of early liver fibrosis by pharmacological inhibition of smoothened receptor signaling. J Drug Target 20:770–782. doi:10.3109/1061186X.2012.719900

    Article  CAS  PubMed  Google Scholar 

  27. • Chung SI, Moon H, Ju H-L et al (2016) Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J Hepatol 64:618–627. doi:10.1016/j.jhep.2015.10.007 This study provides in vivo evidence that hepatocyte overexpression of Sonic Hedgehog via hydrodynamic transfer is sufficient to induce hepatic fibrosis.

    Article  CAS  PubMed  Google Scholar 

  28. Bijlsma MF, Leenders PJA, Janssen BJA et al (2008) Endogenous Hedgehog expression contributes to myocardial ischemia-reperfusion-induced injury. Exp Biol Med Maywood NJ 233:989–996. doi:10.3181/0711-RM-307

    Article  CAS  Google Scholar 

  29. Kusano KF, Pola R, Murayama T et al (2005) Sonic Hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11:1197–1204. doi:10.1038/nm1313

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed RPH, Haider KH, Shujia J et al (2010) Sonic Hedgehog gene delivery to the rodent heart promotes angiogenesis via iNOS/netrin-1/PKC pathway. PLoS One 5:e8576. doi:10.1371/journal.pone.0008576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mackie AR, Klyachko E, Thorne T et al (2012) Sonic Hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111:312–321. doi:10.1161/CIRCRESAHA.112.266015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paulis L, Fauconnier J, Cazorla O et al (2015) Activation of Sonic Hedgehog signaling in ventricular cardiomyocytes exerts cardioprotection against ischemia reperfusion injuries. Sci Rep 5:7983. doi:10.1038/srep07983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Kramann R, Schneider RK, DiRocco DP et al (2015) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16:51–66. doi:10.1016/j.stem.2014.11.004 This work demonstrates that Gli1 is an in vivo marker for mesenchymal stem cells (MSCs) and that Gli1+ MSCs are an important source of myofibroblasts in heart, kidney, lung, and liver fibrosis. Importantly, genetic ablation of these cells abolished cardiac fibrosis and rescued left ventricular function following aortic banding.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao H, Feng J, Ho T-V et al (2015) The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17:386–396. doi:10.1038/ncb3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao H, Feng J, Seidel K et al (2014) Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. Cell Stem Cell 14:160–173. doi:10.1016/j.stem.2013.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bielesz B, Sirin Y, Si H et al (2010) Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 120:4040–4054. doi:10.1172/JCI43025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mariana M, Park J-K, Sharma S et al (2010) Expressions of Notch pathway proteins correlate with albuminuria, glomerulosclerosis and renal function. Kidney Int 78:514–522. doi:10.1038/ki.2010.172

    Article  PubMed Central  CAS  Google Scholar 

  38. Sörensen-Zender I, Rong S, Susnik N et al (2014) Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury. Am J Physiol Ren Physiol 306:F907–F915. doi:10.1152/ajprenal.00030.2014

    Article  CAS  Google Scholar 

  39. Djudjaj S, Chatziantoniou C, Raffetseder U et al (2012) Notch-3 receptor activation drives inflammation and fibrosis following tubulointerstitial kidney injury. J Pathol 228:286–299. doi:10.1002/path.4076

    Article  CAS  PubMed  Google Scholar 

  40. Huang R, Zhou Q, Veeraragoo P et al (2011) Notch2/Hes-1 pathway plays an important role in renal ischemia and reperfusion injury-associated inflammation and apoptosis and the γ-secretase inhibitor DAPT has a nephroprotective effect. Ren Fail 33:207–216. doi:10.3109/0886022X.2011.553979

    Article  CAS  PubMed  Google Scholar 

  41. Xiao Z, Zhang J, Peng X et al (2014) The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int J Biochem Cell Biol 55:65–71. doi:10.1016/j.biocel.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  42. Aoyagi-Ikeda K, Maeno T, Matsui H et al (2011) Notch induces myofibroblast differentiation of alveolar epithelial cells via transforming growth factor-{beta}-Smad3 pathway. Am J Respir Cell Mol Biol 45:136–144. doi:10.1165/rcmb.2009-0140OC

    CAS  PubMed  Google Scholar 

  43. • Cao Z, Lis R, Ginsberg M et al (2016) Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med 22:154–162. doi:10.1038/nm.4035 In this study, repeated intratracheal bleomycin instillation inhibited repair and stimulated fibrosis by downregulation of the prorepair chemokine receptor CXCR7 and subsequent upregulation of the profibrotic Jagged1 on pulmonary capillary endothelial cells (PCECs). Upregulation of Jagged1 on PCEC stimulated fibroblast Notch signaling and myofibroblast differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. • Hu B, Wu Z, Bai D et al (2015) Mesenchymal deficiency of Notch1 attenuates bleomycin-induced pulmonary fibrosis. Am J Pathol 185:3066–3075. doi:10.1016/j.ajpath.2015.07.014 The authors provide in vivo evidence by conditional KO of Notch1 in collagen-expressing cells that mesenchymal Notch1 signaling drives myofibroblast differentiation in pulmonary fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li X, Zhang X, Leathers R et al (2009) Notch3 signaling is required for the development of pulmonary arterial hypertension. Nat Med 15:1289–1297. doi:10.1038/nm.2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu T, Hu B, Choi YY et al (2009) Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol 174:1745–1755. doi:10.2353/ajpath.2009.080618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu M, Ou-Yang H-F, Wu C-G et al (2014) Notch signaling regulates col1α1 and col1α2 expression in airway fibroblasts. Exp Biol Med Maywood NJ 239:1589–1596. doi:10.1177/1535370214538919

    Article  CAS  Google Scholar 

  48. •• Vaughan AE, Brumwell AN, Xi Y et al (2015) Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517:621–625. doi:10.1038/nature14112 The authors identify lineage negative epithelial progenitor cells that proliferate after injury. Transient Notch signaling was required to activate LNEP, but persistent Notch signaling led to a fibrotic micro-honeycombing lung phenotype.

    Article  CAS  PubMed  Google Scholar 

  49. Wurmbach E, Chen Y, Khitrov G et al (2007) Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatol Baltim Md 45:938–947. doi:10.1002/hep.21622

    Article  CAS  Google Scholar 

  50. Spee B, Carpino G, Schotanus BA et al (2010) Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut 59:247–257. doi:10.1136/gut.2009.188367

    Article  PubMed  Google Scholar 

  51. Nijjar SS, Wallace L, Crosby HA et al (2002) Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects. Am J Pathol 160:1695–1703. doi:10.1016/S0002-9440(10)61116-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen Z, Liu Y, Dewidar B et al (2016) Delta-like ligand 4 modulates liver damage by down-regulating chemokine expression. Am J Pathol 186:1874–1889. doi:10.1016/j.ajpath.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Zheng S, Qi D et al (2012) Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One 7:e46512. doi:10.1371/journal.pone.0046512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bansal R, van Baarlen J, Storm G, Prakash J (2015) The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis. Sci Rep 5:18272. doi:10.1038/srep18272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang X, Du G, Xu Y et al (2016) Inhibition of Notch signaling pathway prevents cholestatic liver fibrosis by decreasing the differentiation of hepatic progenitor cells into cholangiocytes. Lab Investig J Tech Methods Pathol 96:350–360. doi:10.1038/labinvest.2015.149

    Article  CAS  Google Scholar 

  56. He F, Guo F-C, Li Z et al (2015) Myeloid-specific disruption of recombination signal binding protein Jκ ameliorates hepatic fibrosis by attenuating inflammation through cylindromatosis in mice. Hepatol Baltim Md 61:303–314. doi:10.1002/hep.27394

    Article  CAS  Google Scholar 

  57. Zhang K, Zhang Y-Q, Ai W-B et al (2015) Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling. World J Gastroenterol 21:878–887. doi:10.3748/wjg.v21.i3.878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dees C, Zerr P, Tomcik M et al (2011) Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum 63:1396–1404. doi:10.1002/art.30254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dees C, Tomcik M, Zerr P et al (2011) Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Ann Rheum Dis 70:1304–1310. doi:10.1136/ard.2010.134742

    Article  CAS  PubMed  Google Scholar 

  60. Chen B-Y, Zheng M-H, Chen Y et al (2015) Myeloid-specific blockade of Notch signaling by RBP-J knockout attenuates spinal cord injury accompanied by compromised inflammation response in mice. Mol Neurobiol 52:1378–1390. doi:10.1007/s12035-014-8934-z

    Article  CAS  PubMed  Google Scholar 

  61. Nemir M, Metrich M, Plaisance I et al (2014) The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J 35:2174–2185. doi:10.1093/eurheartj/ehs269

    Article  CAS  PubMed  Google Scholar 

  62. Pei H, Yu Q, Xue Q et al (2013) Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol 108:373. doi:10.1007/s00395-013-0373-x

    Article  PubMed  CAS  Google Scholar 

  63. Boopathy AV, Martinez MD, Smith AW et al (2015) Intramyocardial delivery of Notch ligand-containing hydrogels improves cardiac function and angiogenesis following infarction. Tissue Eng Part A 21:2315–2322. doi:10.1089/ten.TEA.2014.0622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. He W, Dai C, Li Y et al (2009) Wnt/beta-catenin signaling promotes renal interstitial fibrosis. J Am Soc Nephrol JASN 20:765–776. doi:10.1681/ASN.2008060566

    Article  CAS  PubMed  Google Scholar 

  65. Saito S, Tampe B, Müller GA, Zeisberg M (2015) Primary cilia modulate balance of canonical and non-canonical Wnt signaling responses in the injured kidney. Fibrogenesis Tissue Repair 8:6. doi:10.1186/s13069-015-0024-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. • Xiao L, Zhou D, Tan RJ et al (2016) Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J Am Soc Nephrol JASN 27:1727–1740. doi:10.1681/ASN.2015040449 In this study, the authors report that persistent, but not transient Wnt signaling after injury drives fibrosis and AKI to CKD progression.

    Article  PubMed  Google Scholar 

  67. Dai C, Stolz DB, Kiss LP et al (2009) Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. J Am Soc Nephrol JASN 20:1997–2008. doi:10.1681/ASN.2009010019

    Article  CAS  PubMed  Google Scholar 

  68. Kim M-K, Maeng Y-I, Sung WJ et al (2013) The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study. Int J Clin Exp Pathol 6:1747–1758

    PubMed  PubMed Central  Google Scholar 

  69. DiRocco DP, Kobayashi A, Taketo MM et al (2013) Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J Am Soc Nephrol JASN 24:1399–1412. doi:10.1681/ASN.2012050512

    Article  CAS  PubMed  Google Scholar 

  70. Matsuyama M, Nomori A, Nakakuni K et al (2014) Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem 289:31526–31533. doi:10.1074/jbc.M114.584565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xue H, Xiao Z, Zhang J et al (2013) Disruption of the Dapper3 gene aggravates ureteral obstruction-mediated renal fibrosis by amplifying Wnt/β-catenin signaling. J Biol Chem 288:15006–15014. doi:10.1074/jbc.M113.458448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kato H, Gruenwald A, Suh JH et al (2011) Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem 286:26003–26015. doi:10.1074/jbc.M111.223164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou L, Li Y, Hao S et al (2015) Multiple genes of the renin-angiotensin system are novel targets of Wnt/β-catenin signaling. J Am Soc Nephrol JASN 26:107–120. doi:10.1681/ASN.2014010085

    Article  CAS  PubMed  Google Scholar 

  74. • Maarouf OH, Aravamudhan A, Rangarajan D et al (2016) Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J Am Soc Nephrol JASN 27:781–790. doi:10.1681/ASN.2014121188 In this study, the authors show that epithelial Wnt1 overexpression in proximal tubules is sufficient to induce interstitial fibrosis via epithelial-mesenchymal crosstalk.

    Article  CAS  PubMed  Google Scholar 

  75. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol JASN 26:1765–1776. doi:10.1681/ASN.2015010006

    Article  CAS  PubMed  Google Scholar 

  76. Chilosi M, Poletti V, Zamò A et al (2003) Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 162:1495–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lam AP, Flozak AS, Russell S et al (2011) Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am J Respir Cell Mol Biol 45:915–922. doi:10.1165/rcmb.2010-0113OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rydell-Törmänen K, Zhou X-H, Hallgren O et al (2016) Aberrant nonfibrotic parenchyma in idiopathic pulmonary fibrosis is correlated with decreased β-catenin inhibition and increased Wnt5a/b interaction. Physiol Rep. doi:10.14814/phy2.12727

    Google Scholar 

  79. Lam AP, Herazo-Maya JD, Sennello JA et al (2014) Wnt coreceptor Lrp5 is a driver of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 190:185–195. doi:10.1164/rccm.201401-0079OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oda K, Yatera K, Izumi H et al (2016) Profibrotic role of WNT10A via TGF-β signaling in idiopathic pulmonary fibrosis. Respir Res 17:39. doi:10.1186/s12931-016-0357-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Henderson WR, Chi EY, Ye X et al (2010) Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A 107:14309–14314. doi:10.1073/pnas.1001520107

    Article  PubMed  PubMed Central  Google Scholar 

  82. Huang S-MA, Mishina YM, Liu S et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620. doi:10.1038/nature08356

    Article  CAS  PubMed  Google Scholar 

  83. Chen X, Shi C, Meng X et al (2016) Inhibition of Wnt/β-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-β1 and FGF-2. Exp Mol Pathol 101:22–30. doi:10.1016/j.yexmp.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  84. Ulsamer A, Wei Y, Kim KK et al (2012) Axin pathway activity regulates in vivo pY654-β-catenin accumulation and pulmonary fibrosis. J Biol Chem 287:5164–5172. doi:10.1074/jbc.M111.322123

    Article  CAS  PubMed  Google Scholar 

  85. Wang C, Zhu H, Sun Z et al (2014) Inhibition of Wnt/β-catenin signaling promotes epithelial differentiation of mesenchymal stem cells and repairs bleomycin-induced lung injury. Am J Physiol Cell Physiol 307:C234–C244. doi:10.1152/ajpcell.00366.2013

    Article  CAS  PubMed  Google Scholar 

  86. Wang C, Dai J, Sun Z et al (2015) Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process. Exp Cell Res 331:115–122. doi:10.1016/j.yexcr.2014.10.023

    Article  CAS  PubMed  Google Scholar 

  87. Newman DR, Sills WS, Hanrahan K et al (2016) Expression of WNT5A in idiopathic pulmonary fibrosis and its control by TGF-β and WNT7B in human lung fibroblasts. J Histochem Cytochem Off J Histochem Soc 64:99–111. doi:10.1369/0022155415617988

    Article  CAS  Google Scholar 

  88. Liu Y, El-Serag HB, Jiao L et al (2013) WNT signaling pathway gene polymorphisms and risk of hepatic fibrosis and inflammation in HCV-infected patients. PLoS One 8:e84407. doi:10.1371/journal.pone.0084407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ge W-S, Wang Y-J, Wu J-X et al (2014) β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation. Mol Med Rep 9:2145–2151. doi:10.3892/mmr.2014.2099

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang F, Parsons CJ, Stefanovic B (2006) Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol 45:401–409. doi:10.1016/j.jhep.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  91. Corbett L, Mann J, Mann DA (2015) Non-canonical Wnt predominates in activated rat hepatic stellate cells, influencing HSC survival and paracrine stimulation of Kupffer cells. PLoS One 10:e0142794. doi:10.1371/journal.pone.0142794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Cheng JH, She H, Han Y-P et al (2008) Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 294:G39–G49. doi:10.1152/ajpgi.00263.2007

    Article  CAS  PubMed  Google Scholar 

  93. He L, Gubbins J, Peng Z et al (2016) Activation of hepatic stellate cell in Pten null liver injury model. Fibrogenesis Tissue Repair 9:8. doi:10.1186/s13069-016-0045-1

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhu N-L, Asahina K, Wang J et al (2012) Hepatic stellate cell-derived delta-like homolog 1 (DLK1) protein in liver regeneration. J Biol Chem 287:10355–10367. doi:10.1074/jbc.M111.312751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chatani N, Kamada Y, Kizu T et al (2015) Secreted frizzled-related protein 5 (Sfrp5) decreases hepatic stellate cell activation and liver fibrosis. Liver Int Off J Int Assoc Study Liver 35:2017–2026. doi:10.1111/liv.12757

    CAS  Google Scholar 

  96. Aisagbonhi O, Rai M, Ryzhov S et al (2011) Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4:469–483. doi:10.1242/dmm.006510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Oerlemans MIFJ, Goumans M-J, van Middelaar B et al (2010) Active Wnt signaling in response to cardiac injury. Basic Res Cardiol 105:631–641. doi:10.1007/s00395-010-0100-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sklepkiewicz P, Shiomi T, Kaur R et al (2015) Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail 8:362–372. doi:10.1161/CIRCHEARTFAILURE.114.001274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ye B, Ge Y, Perens G et al (2013) Canonical Wnt/β-catenin signaling in epicardial fibrosis of failed pediatric heart allografts with diastolic dysfunction. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 22:54–57. doi:10.1016/j.carpath.2012.03.004

    Article  CAS  Google Scholar 

  100. Duan J, Gherghe C, Liu D et al (2012) Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J 31:429–442. doi:10.1038/emboj.2011.418

    Article  CAS  PubMed  Google Scholar 

  101. Paik DT, Rai M, Ryzhov S et al (2015) Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis. Circ Res 117:804–816. doi:10.1161/CIRCRESAHA.115.306886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Laeremans H, Hackeng TM, van Zandvoort MAMJ et al (2011) Blocking of frizzled signaling with a homologous peptide fragment of wnt3a/wnt5a reduces infarct expansion and prevents the development of heart failure after myocardial infarction. Circulation 124:1626–1635. doi:10.1161/CIRCULATIONAHA.110.976969

    Article  CAS  PubMed  Google Scholar 

  103. Barandon L, Couffinhal T, Ezan J et al (2003) Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation 108:2282–2289. doi:10.1161/01.CIR.0000093186.22847.4C

    Article  CAS  PubMed  Google Scholar 

  104. Kobayashi K, Luo M, Zhang Y et al (2009) Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11:46–55. doi:10.1038/ncb1811

    Article  CAS  PubMed  Google Scholar 

  105. He W, Zhang L, Ni A et al (2010) Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 107:21110–21115. doi:10.1073/pnas.1004708107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Noack C, Zafiriou M-P, Schaeffer H-J et al (2012) Krueppel-like factor 15 regulates Wnt/β-catenin transcription and controls cardiac progenitor cell fate in the postnatal heart. EMBO Mol Med 4:992–1007. doi:10.1002/emmm.201101043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmeckpeper J, Verma A, Yin L et al (2015) Inhibition of Wnt6 by Sfrp2 regulates adult cardiac progenitor cell differentiation by differential modulation of Wnt pathways. J Mol Cell Cardiol 85:215–225. doi:10.1016/j.yjmcc.2015.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kwon C, Cheng P, King IN et al (2011) Notch post-translationally regulates β-catenin protein in stem and progenitor cells. Nat Cell Biol 13:1244–1251. doi:10.1038/ncb2313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kwon C, Qian L, Cheng P et al (2009) A regulatory pathway involving Notch1/β-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11:951–957. doi:10.1038/ncb1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang M, Chang A, Choi M et al (2014) Antagonistic interaction between Wnt and Notch activity modulates the regenerative capacity of a zebrafish fibrotic liver model. Hepatol Baltim Md 60:1753–1766. doi:10.1002/hep.27285

    Article  CAS  Google Scholar 

  111. Li X, Deng W, Lobo-Ruppert S, Ruppert J (2007) Gli1 acts through snail and E-cadherin to promote nuclear signaling by β-catenin. Oncogene 26:4489–4498. doi:10.1038/sj.onc.1210241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ulloa F, Itasaki N, Briscoe J (2007) Inhibitory Gli3 activity negatively regulates Wnt/beta-catenin signaling. Curr Biol CB 17:545–550. doi:10.1016/j.cub.2007.01.062

    Article  CAS  PubMed  Google Scholar 

  113. Varnat F, Siegl-Cachedenier I, Malerba M et al (2010) Loss of WNT-TCF addiction and enhancement of HH-GLI1 signalling define the metastatic transition of human colon carcinomas. EMBO Mol Med 2:440–457. doi:10.1002/emmm.201000098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Androutsellis-Theotokis A, Leker RR, Soldner F et al (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826. doi:10.1038/nature04940

    Article  CAS  PubMed  Google Scholar 

  115. Ingram WJ, McCue KI, Tran TH et al (2007) Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 27:1489–1500. doi:10.1038/sj.onc.1210767

    Article  PubMed  CAS  Google Scholar 

  116. Stecca B, Ruiz i Altaba A (2009) A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 28:663–676. doi:10.1038/emboj.2009.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the German Research Foundation (KR-4073/3-1, SFB TRR57, P30), a grant of the European Research Council (ERC-StG 677448), a START grant of the RWTH Aachen University (101/15), and a grant of the State of Northrhinewestfalia (Return to NRW) all to RK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Kramann.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Additional information

This article is part of the Topical Collection on Activated Myofibroblasts and Fibrosis in Various Organs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoeft, K., Kramann, R. Developmental Signaling and Organ Fibrosis. Curr Pathobiol Rep 5, 133–143 (2017). https://doi.org/10.1007/s40139-017-0136-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0136-8

Keywords

Navigation