Skip to main content

Advertisement

Log in

Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Oxidative/nitrative stress plays an important role in myocardial ischemia/reperfusion (MI/R) injury. Notch1 participates in the regulation of cardiogenesis and cardiac response to hypertrophic stress, but the function of Notch1 signaling in MI/R has not been explored. This study aims to determine the role of Notch1 in MI/R, and investigate whether Notch1 confers cardioprotection. Notch1 specific small interfering RNA (siRNA, 20 μg) or Jagged1 (a Notch ligand, 12 μg) was delivered through intramyocardial injection. 48 h after injection, mice were subjected to 30 min of myocardial ischemia followed by 3 h (for cell apoptosis and oxidative/nitrative stress), 24 h (for infarct size and cardiac function), or 2 weeks (for cardiac fibrosis and function) of reperfusion. Cardiac-specific Notch1 knockdown resulted in significantly aggravated I/R injury, as evidenced by enlarged infarct size, depressed cardiac function, increased myocardial apoptosis and cardiac fibrosis. Downregulation of Notch1 increased expression of inducible NO synthase (iNOS) and gp91phox, enhanced the production of NO metabolites and superoxide, as well as their cytotoxic reaction product peroxynitrite. Moreover, Notch1 blockade also reduced phosphorylation of endothelial NO synthase (eNOS) and Akt, and increased expression of PTEN, a key phosphatase involved in the regulation of Akt phosphorylation. In addition, activation of Notch1 by Jagged1 or administration of peroxynitrite scavenger reduced production of peroxynitrite and attenuated MI/R injury. These data indicate that Notch1 signaling protects against MI/R injury partly though PTEN/Akt mediated anti-oxidative and anti-nitrative effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmad I, Balasubramanian S, Del DC, Parameswaran S, Katz AR, Toris C, Fariss RN (2011) Regulation of ocular angiogenesis by Notch signaling: implications in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 52:2868–2878. doi:10.1167/iovs.10-6608

    Article  PubMed  CAS  Google Scholar 

  2. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138:3593–3612. doi:10.1242/dev.063610

    Article  PubMed  CAS  Google Scholar 

  3. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826. doi:10.1038/nature04940

    Article  PubMed  CAS  Google Scholar 

  4. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  5. Bell R, Beeuwkes R, Botker HE, Davidson S, Downey J, Garcia-Dorado D, Hausenloy DJ, Heusch G, Ibanez B, Kitakaze M, Lecour S, Mentzer R, Miura T, Opie L, Ovize M, Ruiz-Meana M, Schulz R, Shannon R, Walker M, Vinten-Johansen J, Yellon D (2012) Trials, tribulations and speculation! report from the 7th biennial hatter cardiovascular institute workshop. Basic Res Cardiol 107:300. doi:10.1007/s00395-012-0300-6

    Article  PubMed  Google Scholar 

  6. Bolos V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339–363. doi:10.1210/er.2006-0046

    Article  PubMed  CAS  Google Scholar 

  7. Boni A, Urbanek K, Nascimbene A, Hosoda T, Zheng H, Delucchi F, Amano K, Gonzalez A, Vitale S, Ojaimi C, Rizzi R, Bolli R, Yutzey KE, Rota M, Kajstura J, Anversa P, Leri A (2008) Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci U S A 105:15529–15534. doi:10.1073/pnas.0808357105

    Article  PubMed  CAS  Google Scholar 

  8. Borbely A, Toth A, Edes I, Virag L, Papp JG, Varro A, Paulus WJ, van der Velden J, Stienen GJ, Papp Z (2005) Peroxynitrite-induced alpha-actinin nitration and contractile alterations in isolated human myocardial cells. Cardiovasc Res 67:225–233. doi:10.1016/j.cardiores.2005.03.025

    Article  PubMed  CAS  Google Scholar 

  9. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689. doi:10.1038/nrm2009

    Article  PubMed  CAS  Google Scholar 

  10. Ciofani M, Zuniga-Pflucker JC (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888. doi:10.1038/ni1234

    Article  PubMed  CAS  Google Scholar 

  11. Collesi C, Zentilin L, Sinagra G, Giacca M (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183:117–128. doi:10.1083/jcb.200806091

    Article  PubMed  CAS  Google Scholar 

  12. Croquelois A, Domenighetti AA, Nemir M, Lepore M, Rosenblatt-Velin N, Radtke F, Pedrazzini T (2008) Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med 205:3173–3185. doi:10.1084/jem.20081427

    Article  PubMed  CAS  Google Scholar 

  13. Dror V, Nguyen V, Walia P, Kalynyak TB, Hill JA, Johnson JD (2007) Notch signalling suppresses apoptosis in adult human and mouse pancreatic islet cells. Diabetologia 50:2504–2515. doi:10.1007/s00125-007-0835-5

    Article  PubMed  CAS  Google Scholar 

  14. Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, Ma XL, Koch WJ (2010) A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circ Res 107:1445–1453. doi:10.1161/CIRCRESAHA.110.223925

    Article  PubMed  CAS  Google Scholar 

  15. Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, Ma XL (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502. doi:10.1161/01.CIR.0000012529.00367.0F

    Article  PubMed  CAS  Google Scholar 

  16. Ge W, Ren J (2012) mTOR-STAT3-notch signalling contributes to ALDH2-induced protection against cardiac contractile dysfunction and autophagy under alcoholism. J Cell Mol Med 16:616–626. doi:10.1111/j.1582-4934.2011.01347.x

    Article  PubMed  Google Scholar 

  17. Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J, Bongarzone ER (2006) Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 28:81–91. doi:10.1159/000090755

    Article  PubMed  CAS  Google Scholar 

  18. Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA (2008) Activation of Notch-mediated protective signaling in the myocardium. Circ Res 102:1025–1035. doi:10.1161/CIRCRESAHA.107.164749

    Article  PubMed  CAS  Google Scholar 

  19. Guha S, Cullen JP, Morrow D, Colombo A, Lally C, Walls D, Redmond EM, Cahill PA (2011) Glycogen synthase kinase 3 beta positively regulates Notch signaling in vascular smooth muscle cells: role in cell proliferation and survival. Basic Res Cardiol 106:773–785. doi:10.1007/s00395-011-0189-5

    Article  PubMed  CAS  Google Scholar 

  20. Gutierrez A, Look AT (2007) NOTCH and PI3 K-AKT pathways intertwined. Cancer Cell 12:411–413. doi:10.1016/j.ccr.2007.10.027

    Article  PubMed  CAS  Google Scholar 

  21. Hariharan N, Zhai P, Sadoshima J (2011) Oxidative stress stimulates autophagic flux during ischemia/reperfusion. Antioxid Redox Signal 14:2179–2190. doi:10.1089/ars.2010.3488

    Article  PubMed  CAS  Google Scholar 

  22. Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu MM, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon DM (2010) Translating novel strategies for cardioprotection: the hatter workshop recommendations. Basic Res Cardiol 105:677–686. doi:10.1007/s00395-010-0121-4

    Article  PubMed  Google Scholar 

  23. Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.1161/CIRCRESAHA.108.186015

    Article  PubMed  CAS  Google Scholar 

  24. Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi:10.1016/S0140-6736(12)60916-7

    Article  PubMed  Google Scholar 

  25. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  26. Ishikura N, Clever JL, Bouzamondo-Bernstein E, Samayoa E, Prusiner SB, Huang EJ, DeArmond SJ (2005) Notch-1 activation and dendritic atrophy in prion disease. Proc Natl Acad Sci U S A 102:886–891. doi:10.1073/pnas.0408612101

    Article  PubMed  CAS  Google Scholar 

  27. Ishitani T, Hirao T, Suzuki M, Isoda M, Ishitani S, Harigaya K, Kitagawa M, Matsumoto K, Itoh M (2010) Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nat Cell Biol 12:278–285. doi:10.1038/ncb2028

    PubMed  CAS  Google Scholar 

  28. Jensen CH, Jauho EI, Santoni-Rugiu E, Holmskov U, Teisner B, Tygstrup N, Bisgaard HC (2004) Transit-amplifying ductular (oval) cells and their hepatocytic progeny are characterized by a novel and distinctive expression of delta-like protein/preadipocyte factor 1/fetal antigen 1. Am J Pathol 164:1347–1359. doi:10.1016/S0002-9440(10)63221-X

    Article  PubMed  CAS  Google Scholar 

  29. Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J (2005) Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128:728–741. doi:10.1053/j.gastro.2004.12.008

    Article  PubMed  CAS  Google Scholar 

  30. Ji L, Fu F, Zhang L, Liu W, Cai X, Zhang L, Zheng Q, Zhang H, Gao F (2010) Insulin attenuates myocardial ischemia/reperfusion injury via reducing oxidative/nitrative stress. Am J Physiol Endocrinol Metab 298:E871–E880. doi:10.1152/ajpendo.00623.2009

    Article  PubMed  CAS  Google Scholar 

  31. Jiang S, Zhu W, Li C, Zhang X, Lu T, Ding Z, Cao K, Liu L (2013) alpha-Lipoic acid attenuates LPS-induced cardiac dysfunction through a PI3 K/Akt-dependent mechanism. Int Immunopharmacol 16:100–107. doi:10.1016/j.intimp.2013.03.024

    Article  PubMed  CAS  Google Scholar 

  32. Jiao XY, Gao E, Yuan Y, Wang Y, Lau WB, Koch W, Ma XL, Tao L (2009) INO-4885 [5,10,15,20-tetra[N-(benzyl-4′-carboxylate)-2-pyridinium]-21H,23H-porphine iron(III) chloride], a peroxynitrite decomposition catalyst, protects the heart against reperfusion injury in mice. J Pharmacol Exp Ther 328:777–784. doi:10.1124/jpet.108.144352

    Article  PubMed  CAS  Google Scholar 

  33. Kim YM, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256. doi:10.1161/01.RES.84.3.253

    Article  PubMed  CAS  Google Scholar 

  34. Kleinbongard P, Heusch G, Schulz R (2010) TNFalpha in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol Ther 127:295–314. doi:10.1016/j.pharmthera.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  35. Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N, Mourkioti F (2010) Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ Res 106:559–572. doi:10.1161/CIRCRESAHA.109.203034

    Article  PubMed  CAS  Google Scholar 

  36. Leal MC, Surace EI, Holgado MP, Ferrari CC, Tarelli R, Pitossi F, Wisniewski T, Castano EM, Morelli L (2012) Notch signaling proteins HES-1 and Hey-1 bind to insulin degrading enzyme (IDE) proximal promoter and repress its transcription and activity: implications for cellular Aβ metabolism. Biochim Biophys Acta 1823:227–235. doi:10.1016/j.bbamcr.2011.09.014

    Article  PubMed  CAS  Google Scholar 

  37. Liu CM, Ma JQ, Sun YZ (2012) Puerarin protects rat kidney from lead-induced apoptosis by modulating the PI3 K/Akt/eNOS pathway. Toxicol Appl Pharmacol 258:330–342. doi:10.1016/j.taap.2011.11.015

    Article  PubMed  CAS  Google Scholar 

  38. Liu S, Yin T, Wei X, Yi W, Qu Y, Liu Y, Wang R, Lian K, Xia C, Pei H, Sun L, Ma Y, Lau WB, Gao E, Koch WJ, Wang H, Tao L (2011) Downregulation of adiponectin induced by tumor necrosis factor alpha is involved in the aggravation of posttraumatic myocardial ischemia/reperfusion injury. Crit Care Med 39:1935–1943. doi:10.1097/CCM.0b013e31821b85db

    Article  PubMed  CAS  Google Scholar 

  39. Lovschall H, Tummers M, Thesleff I, Fuchtbauer EM, Poulsen K (2005) Activation of the Notch signaling pathway in response to pulp capping of rat molars. Eur J Oral Sci 113:312–317. doi:10.1111/j.1600-0722.2005.00221.x

    Article  PubMed  CAS  Google Scholar 

  40. Ma H, Guo R, Yu L, Zhang Y, Ren J (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur Heart J 32:1025–1038. doi:10.1093/eurheartj/ehq253

    Article  PubMed  CAS  Google Scholar 

  41. Ma Y, Liu Y, Liu S, Qu Y, Wang R, Xia C, Pei H, Lian K, Yin T, Lu X, Sun L, Yang L, Cao Y, Lau WB, Gao E, Wang H, Tao L (2011) Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice. Am J Physiol Endocrinol Metab 301:E447–E455. doi:10.1152/ajpendo.00687.2010

    Article  PubMed  CAS  Google Scholar 

  42. MacLellan WR, Schneider MD (1997) Death by design. Programmed cell death in cardiovascular biology and disease. Circ Res 81:137–144. doi:10.1161/01.RES.81.2.137

    Article  PubMed  CAS  Google Scholar 

  43. Miele L (2006) Notch signaling. Clin Cancer Res 12:1074–1079. doi:10.1158/1078-0432.CCR-05-2570

    Article  PubMed  CAS  Google Scholar 

  44. Mitsiadis TA, Fried K, Goridis C (1999) Reactivation of Delta-Notch signaling after injury: complementary expression patterns of ligand and receptor in dental pulp. Exp Cell Res 246:312–318. doi:10.1006/excr.1998.4285

    Article  PubMed  CAS  Google Scholar 

  45. Nemir M, Pedrazzini T (2008) Functional role of Notch signaling in the developing and postnatal heart. J Mol Cell Cardiol 45:495–504. doi:10.1016/j.yjmcc.2008.02.273

    Article  PubMed  CAS  Google Scholar 

  46. Nickoloff BJ, Qin JZ, Chaturvedi V, Denning MF, Bonish B, Miele L (2002) Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 9:842–855. doi:10.1038/sj.cdd.4401036

    Article  PubMed  CAS  Google Scholar 

  47. Pacher P, Schulz R, Liaudet L, Szabo C (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26:302–310. doi:10.1016/j.tips.2005.04.003

    Article  PubMed  CAS  Google Scholar 

  48. Palomero T, Dominguez M, Ferrando AA (2008) The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle 7:965–970. doi:10.4161/cc.7.8.5753

    Article  PubMed  CAS  Google Scholar 

  49. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, Bhagat G, Agarwal AM, Basso G, Castillo M, Nagase S, Cordon-Cardo C, Parsons R, Zuniga-Pflucker JC, Dominguez M, Ferrando AA (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13:1203–1210. doi:10.1038/nm1636

    Article  PubMed  CAS  Google Scholar 

  50. Park DW, Kim JR, Kim SY, Sonn JK, Bang OS, Kang SS, Kim JH, Baek SH (2003) Akt as a mediator of secretory phospholipase A2 receptor-involved inducible nitric oxide synthase expression. J Immunol 170:2093–2099

    PubMed  CAS  Google Scholar 

  51. Paterniti I, Esposito E, Mazzon E, Bramanti P, Cuzzocrea S (2011) Evidence for the role of PI(3) -kinase-AKT-eNOS signalling pathway in secondary inflammatory process after spinal cord compression injury in mice. Eur J Neurosci 33:1411–1420. doi:10.1111/j.1460-9568.2011.07646.x

    Article  PubMed  Google Scholar 

  52. Pei H, Jia M, Sun L, Zheng X, Zhou H (2012) A hypothesis: edaravone exert cardioprotection partly via modulation of adiponectin. Med Hypotheses 79:141–142. doi:10.1016/j.mehy.2012.04.015

    Article  PubMed  CAS  Google Scholar 

  53. Pei H, Qu Y, Lu X, Yu Q, Lian K, Liu P, Yan W, Liu J, Ma Y, Liu Y, Li C, Li W, Lau WB, Zhang H, Tao L (2013) Cardiac-derived adiponectin induced by long-term insulin treatment ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic mice via AMPK signaling. Basic Res Cardiol 108:322. doi:10.1007/s00395-012-0322-0

    Article  PubMed  Google Scholar 

  54. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512. doi:10.1161/01.RES.44.4.503

    Article  PubMed  CAS  Google Scholar 

  55. Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernandez-Majada V, Grilli A, Lopez-Bigas N, Bellora N, Alba MM, Torres F, Dunach M, Sanjuan X, Gonzalez S, Gridley T, Capella G, Bigas A, Espinosa L (2009) Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci U S A 106:6315–6320. doi:10.1073/pnas.0813221106

    Article  PubMed  CAS  Google Scholar 

  56. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM (1997) Apoptosis in human acute myocardial infarction. Circulation 95:320–323. doi:10.1161/01.CIR.95.2.320

    Article  PubMed  CAS  Google Scholar 

  57. Schwartz LL, Kloner RA, Arai AE, Baines CP, Bolli R, Braunwald E, Downey J, Gibbons RJ, Gottlieb RA, Heusch G, Jennings RB, Lefer DJ, Mentzer RM, Murphy E, Ovize M, Ping P, Przyklenk K, Sack MN, Vander HR, Vinten-Johansen J, Yellon DM (2011) New horizons in cardioprotection: recommendations from the 2010 national heart, lung, and blood institute workshop. Circulation 124:1172–1179. doi:10.1161/CIRCULATIONAHA.111.032698

    Article  Google Scholar 

  58. Sivasankaran B, Degen M, Ghaffari A, Hegi ME, Hamou MF, Ionescu MC, Zweifel C, Tolnay M, Wasner M, Mergenthaler S, Miserez AR, Kiss R, Lino MM, Merlo A, Chiquet-Ehrismann R, Boulay JL (2009) Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res 69:458–465. doi:10.1158/0008-5472.CAN-08-2610

    Article  PubMed  CAS  Google Scholar 

  59. Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2009) Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res 104:15–18. doi:10.1161/CIRCRESAHA.108.186429

    Article  PubMed  CAS  Google Scholar 

  60. Tao L, Gao E, Jiao X, Yuan Y, Li S, Christopher TA, Lopez BL, Koch W, Chan L, Goldstein BJ, Ma XL (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115:1408–1416. doi:10.1161/CIRCULATIONAHA.106.666941

    Article  PubMed  CAS  Google Scholar 

  61. Tian Z, Zheng H, Li J, Li Y, Su H, Wang X (2012) Genetically induced moderate inhibition of the proteasome in cardiomyocytes exacerbates myocardial ischemia-reperfusion injury in mice. Circ Res 111:532–542. doi:10.1161/CIRCRESAHA.112.270983

    Article  PubMed  CAS  Google Scholar 

  62. Tsukumo S, Hirose K, Maekawa Y, Kishihara K, Yasutomo K (2006) Lunatic fringe controls T cell differentiation through modulating notch signaling. J Immunol 177:8365–8371

    PubMed  CAS  Google Scholar 

  63. Wang W, Sawicki G, Schulz R (2002) Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2. Cardiovasc Res 53:165–174. doi:10.1016/S0008-6363(01)00445-X

    Article  PubMed  CAS  Google Scholar 

  64. Wang XL, Liu HR, Tao L, Liang F, Yan L, Zhao RR, Lopez BL, Christopher TA, Ma XL (2007) Role of iNOS-derived reactive nitrogen species and resultant nitrative stress in leukocytes-induced cardiomyocyte apoptosis after myocardial ischemia/reperfusion. Apoptosis 12:1209–1217. doi:10.1007/s10495-007-0055-y

    Article  PubMed  CAS  Google Scholar 

  65. Wang Z, Li Y, Ahmad A, Banerjee S, Azmi AS, Kong D, Wojewoda C, Miele L, Sarkar FH (2011) Down-regulation of Notch-1 is associated with Akt and FoxM1 in inducing cell growth inhibition and apoptosis in prostate cancer cells. J Cell Biochem 112:78–88. doi:10.1002/jcb.22770

    Article  PubMed  CAS  Google Scholar 

  66. Weijzen S, Velders MP, Elmishad AG, Bacon PE, Panella JR, Nickoloff BJ, Miele L, Kast WM (2002) The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J Immunol 169:4273–4278

    PubMed  CAS  Google Scholar 

  67. Wickremasinghe RG, Prentice AG, Steele AJ (2011) p53 and Notch signaling in chronic lymphocytic leukemia: clues to identifying novel therapeutic strategies. Leukemia 25:1400–1407. doi:10.1038/leu.2011.103

    Article  PubMed  CAS  Google Scholar 

  68. Woo YJ, Zhang JC, Vijayasarathy C, Zwacka RM, Englehardt JF, Gardner TJ, Sweeney HL (1998) Recombinant adenovirus-mediated cardiac gene transfer of superoxide dismutase and catalase attenuates postischemic contractile dysfunction. Circulation 98:I255–I261

    Google Scholar 

  69. Wu Y, Xia ZY, Meng QT, Zhu J, Lei S, Xu J, Dou J (2011) Shen-Fu injection preconditioning inhibits myocardial ischemia-reperfusion injury in diabetic rats: activation of eNOS via the PI3 K/Akt pathway. J Biomed Biotechnol 2011:384627. doi:10.1155/2011/384627

    PubMed  Google Scholar 

  70. Xu L, Zhu Y, Xu J, Wu K, Li J, Xu W, Liu H, Wang S, Yin H, Chen L, Wang G, Lin Z (2012) Notch1 activation promotes renal cell carcinoma growth via PI3 K/Akt signaling. Cancer Sci 103:1253–1258. doi:10.1111/j.1349-7006.2012.02291.x

    Article  PubMed  CAS  Google Scholar 

  71. Xu P, Qiu M, Zhang Z, Kang C, Jiang R, Jia Z, Wang G, Jiang H, Pu P (2010) The oncogenic roles of Notch1 in astrocytic gliomas in vitro and in vivo. J Neurooncol 97:41–51. doi:10.1007/s11060-009-0007-1

    Article  PubMed  CAS  Google Scholar 

  72. Yin T, Hou R, Liu S, Lau WB, Wang H, Tao L (2010) Nitrative inactivation of thioredoxin-1 increases vulnerability of diabetic hearts to ischemia/reperfusion injury. J Mol Cell Cardiol 49:354–361. doi:10.1016/j.yjmcc.2010.05.002

    Article  PubMed  CAS  Google Scholar 

  73. Yu HC, Qin HY, He F, Wang L, Fu W, Liu D, Guo FC, Liang L, Dou KF, Han H (2011) Canonical notch pathway protects hepatocytes from ischemia/reperfusion injury in mice by repressing reactive oxygen species production through JAK2/STAT3 signaling. Hepatology 54:979–988. doi:10.1002/hep.24469

    Article  PubMed  CAS  Google Scholar 

  74. Zhang Y, Ren J (2011) Thapsigargin triggers cardiac contractile dysfunction via NADPH oxidase-mediated mitochondrial dysfunction: role of Akt dephosphorylation. Free Radic Biol Med 51:2172–2184. doi:10.1016/j.freeradbiomed.2011.09.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Program for Chinese National Science Fund for Distinguished Young Scholars (Grant No. 81225001), New Century Excellent Talents in University (Grant No. NCET-11-0870), National Basic Research Program (973 Program) (Grant No. 9732013CB531200) and Chinese National Science Funds (Grants No. 81070676 and 81170186).

Conflict of interest

The authors have not disclosed any potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Qu or Ling Tao.

Additional information

Haifeng Pei, Qiujun Yu and Qiang Xue contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 611 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pei, H., Yu, Q., Xue, Q. et al. Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol 108, 373 (2013). https://doi.org/10.1007/s00395-013-0373-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0373-x

Keywords

Navigation