Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell Therapy: Clinical Progress and Opportunities for Advancement

  • Tissue Engineering and Regeneration, (Bryan Brown and Christopher Dearth, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Mesenchymal stem cells (or multipotent stem cells—MSCs) are multipotent cells that were initially thought to serve as progenitor cells in tissue remodeling, and are now primarily investigated for their immunomodulatory potential in regenerative medicine approaches. MSCs suppress numerous cell types of the immune system primarily through secretion of paracrine mediators. They have been investigated for their ability to enhance allograft survival, and for the treatment of osteoarthritis and cardiovascular disease. A polarization paradigm where different priming stimuli, reflective of an injured tissue, induce either a pro-inflammatory or immunosuppressive MSC phenotype, provides the potential for manipulating MSCs to obtain more predictable clinical effects. There is a tremendous clinical need and numerous clinical trials are underway using allogeneic MSCs, despite evidence that allogeneic MSCs can be immunogenic. Further laboratory and clinical studies will continue to refine and optimize MSC therapy for a wide variety of regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am 76(4):579–592. Available at: http://jbjs.org/content/76/4/579.abstract. Accessed 6 Nov, 2014

  2. Picinich SC, Mishra PJ, Mishra PJ, Glod J, Banerjee D (2007) The therapeutic potential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert Opin Biol Ther 7(7):965–973. doi:10.1517/14712598.7.7.965

    Article  CAS  PubMed  Google Scholar 

  3. Ozawa K, Sato K, Oh I, Ozaki K, Uchibori R, Obara Y, Kikuchi Y, Ito T, Okada T, Urabe M, Mizukami H, Kume A (2008) Cell and gene therapy using mesenchymal stem cells (MSCs). J Autoimmun 30(3):121–127. doi:10.1016/j.jaut.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prockop DJ (2008) Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proc Natl Acad Sci USA 105(38):14638–14643. doi:10.1073/pnas.0803670105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Papadopoulou A, Yiangou M, Athanasiou E, Zogas N, Kaloyannidis P, Batsis I, Fassas A, Anagnostopoulos A, Yannaki E (2012) Mesenchymal stem cells are conditionally therapeutic in preclinical models of rheumatoid arthritis. Ann Rheum Dis 71(10):1733–1740. doi:10.1136/annrheumdis-2011-200985

    Article  PubMed  Google Scholar 

  6. Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, Li X, Zhang X (2013) The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol 173(1):28–37. doi:10.1111/cei.12080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822. doi:10.1182/blood-2004-04-1559

    Article  CAS  PubMed  Google Scholar 

  8. Franquesa M, Mensah FK, Huizinga R, Strini T, Boon L, Lombardo E, DelaRosa O, Laman JD, Grinyó JM, Weimar W, Betjes MGH, Baan CC, Hoogduijn MJ (2014) Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells. doi:10.1002/stem.1881

    Google Scholar 

  9. Bassi ÊJ, de Almeida DC, Moraes-Vieira PMM, Câmara NOS (2012) Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Rev 8(2):329–342. doi:10.1007/s12015-011-9311-1

    Article  CAS  PubMed  Google Scholar 

  10. Cho D-I, Kim MR, Jeong H, Jeong HC, Jeong MH, Yoon SH, Kim YS, Ahn Y (2014) Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 46(1):e70. doi:10.1038/emm.2013.135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802. doi:10.1016/j.biomaterials.2012.02.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Sze SK, de Kleijn DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim S-K (2007) Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol Cell Proteomics 6(10):1680–1689. doi:10.1074/mcp.M600393-MCP200

    Article  CAS  PubMed  Google Scholar 

  13. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10(3):244–258. doi:10.1016/j.stem.2012.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen L, Tredget EE, Wu PYG, Wu Y (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3(4):e1886. doi:10.1371/journal.pone.0001886

    Article  PubMed Central  PubMed  Google Scholar 

  15. Carrade DD, Lame MW, Kent MS, Clark KC, Walker NJ, Borjesson DL (2012) Comparative analysis of the immunomodulatory properties of equine adult-derived mesenchymal stem cells. Cell Med 4(1):1–11. doi:10.3727/215517912X647217

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391. doi:10.1080/14653240903080367

    Article  CAS  PubMed  Google Scholar 

  17. Abumaree M, Al Jumah M, Pace RA, Kalionis B (2012) Immunosuppressive properties of mesenchymal stem cells. Stem Cell Rev 8(2):375–392. doi:10.1007/s12015-011-9312-0

    Article  CAS  PubMed  Google Scholar 

  18. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103(12):4619–4621. doi:10.1182/blood-2003-11-3909

    Article  CAS  PubMed  Google Scholar 

  19. Treacy O, O’Flynn L, Ryan AE, Morcos M, Lohan P, Schu S, Wilk M, Fahy G, Griffin MD, Nosov M, Ritter T (2014) Mesenchymal stem cell therapy promotes corneal allograft survival in rats by local and systemic immunomodulation. Am J Transplant 14(9):2023–2036. doi:10.1111/ajt.12828

    Article  CAS  PubMed  Google Scholar 

  20. Obermajer N, Popp FC, Soeder Y, Haarer J, Geissler EK, Schlitt HJ, Dahlke MH (2014) Conversion of Th17 into IL-17Aneg regulatory T cells: a novel mechanism in prolonged allograft survival promoted by mesenchymal stem cell-supported minimized immunosuppressive therapy. J Immunol. doi:10.4049/jimmunol.1401776

    PubMed  Google Scholar 

  21. Jang YK, Kim M, Lee Y-H, Oh W, Yang YS, Choi SJ (2014) Optimization of the therapeutic efficacy of human umbilical cord blood-mesenchymal stromal cells in an NSG mouse xenograft model of graft-versus-host disease. Cytotherapy 16(3):298–308. doi:10.1016/j.jcyt.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  22. Zhao K, Lou R, Huang F, Peng Y, Jiang Z, Huang K, Wu X, Zhang Y, Fan Z, Zhou H, Liu C, Xiao Y, Sun J, Li Y, Xiang P, Liu Q (2014) Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. doi:10.1016/j.bbmt.2014.09.030

    Google Scholar 

  23. Sánchez-Guijo F, Caballero-Velázquez T, López-Villar O, Redondo A, Parody R, Martínez C, Olavarría E, Andreu E, Prósper F, Díez-Campelo M, Regidor C, Villaron E, López-Corral L, Caballero D, Del Cañizo M-C, Pérez-Simon JA (2014) Sequential third-party mesenchymal stromal cell therapy for refractory acute graft-versus-host disease. Biol Blood Marrow Transplant 20(10):1580–1585. doi:10.1016/j.bbmt.2014.06.015

    Article  PubMed  Google Scholar 

  24. Dayan V, Yannarelli G, Billia F, Filomeno P, Wang X-H, Davies JE, Keating A (2011) Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106(6):1299–1310. doi:10.1007/s00395-011-0221-9

    Article  CAS  PubMed  Google Scholar 

  25. Németh K, Leelahavanichkul A, Yuen PST, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49. doi:10.1038/nm.1905

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chen Y, Teng X, Chen W, Yang J, Yang Z, Yu Y, Shen Z (2014) Timing of transplantation of autologous bone marrow derived mesenchymal stem cells for treating myocardial infarction. Sci China Life Sci 57(2):195–200. doi:10.1007/s11427-013-4605-y

    Article  CAS  PubMed  Google Scholar 

  27. • Díez-Tejedor E, Gutiérrez-Fernández M, Martínez-Sánchez P, Rodríguez-Frutos B, Ruiz-Ares G, Lara ML, Gimeno BF (2014) Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: a safety assessment: a phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial. J Stroke Cerebrovasc Dis 23:1–7. doi:10.1016/j.jstrokecerebrovasdis.2014.06.011. Describes the clinical trial plan beginning in May 2014 to evaluate the safety and efficacy of MSC treatment in ischemic stroke with 2 years of data collection and follow up

  28. Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9(10):584–594. doi:10.1038/nrrheum.2013.109

    Article  CAS  PubMed  Google Scholar 

  29. Wright JG, Swiontkowski MF, Heckman JD (2003) Introducing levels of evidence to the journal. J Bone Joint Surg Am 85-A(1):1–3. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12533564. Accessed October 30, 2014

  30. • Koh YG, Choi YJ, Kwon OR, Kim YS (2014) Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am J Sports Med 42(7):1628–1637. doi:10.1177/0363546514529641. Level 4 observational study looking at the benefit of MSCs to cartilage repair based on arthroscopic appearance in osteoarthritic knees at 1 year

  31. • Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentís J, Sánchez A, García-Sancho J (2014) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. Transplantation 97(11):e66–e68. doi:10.1097/TP.0000000000000167. Level 4 observational study evaluating the benefit of MSCs in knee osteoarthritis at 2 years

  32. •• Vangsness CT, Farr J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M (2014) Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am 96(2):90–98. doi:10.2106/JBJS.M.00058. One of the first level 2 controlled trials to evaluate the benefit of MSC in meniscal repair

  33. •• Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5(4):e10088. doi:10.1371/journal.pone.0010088. This article describes the initial experimental evidence behind the MSC polarization paradigm

  34. Bunnell BA, Betancourt AM, Sullivan DE (2010) New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther 1(5):34. doi:10.1186/scrt34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C, Li J (2014) Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 26(2):192–197. doi:10.1016/j.cellsig.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz YS, Svistelnik AV (2012) Functional phenotypes of macrophages and the M1-M2 polarization concept. Part I. Proinflammatory phenotype. Biochem 77(3):246–260. doi:10.1134/S0006297912030030

  37. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185. doi:10.1002/path.4133

    Article  CAS  PubMed  Google Scholar 

  38. Brown BN, Badylak SF (2013) Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater 9(2):4948–4955. doi:10.1016/j.actbio.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  39. Wolf MT, Dearth CL, Ranallo CA, LoPresti ST, Carey LE, Daly KA, Brown BN, Badylak SF (2014) Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials. doi:10.1016/j.biomaterials.2014.04.115

    Google Scholar 

  40. Brown BN, Londono R, Tottey S, Zhang L, Kukla KA, Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 8(3):978–987. doi:10.1016/j.actbio.2011.11.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA (2013) Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal 11(1):29. doi:10.1186/1478-811X-11-29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Melief SM, Geutskens SB, Fibbe WE, Roelofs H (2013) Multipotent stromal cells skew monocytes towards an anti-inflammatory function: the link with key immunoregulatory molecules. Haematologica 98(9):e121–e122. doi:10.3324/haematol.2013.093864

    Article  PubMed Central  PubMed  Google Scholar 

  43. Prockop DJ, Oh JY (2012) Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 20(1):14–20. doi:10.1038/mt.2011.211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. • Waterman RS, Morgenweck J, Nossaman BD, Scandurro AE, Scandurro SA, Betancourt AM (2012) Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy. Stem Cells Transl Med 1(7):557–565. doi:10.5966/sctm.2012-0025. This article describes a successful in vivo benefit in a mouse model of painful diabetic neuropathy using MSC2 primed MSCs compared to unprimed MSCs

  45. • Waterman RS, Henkle SL, Betancourt AM (2012) Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS One 7(9):e45590. doi:10.1371/journal.pone.0045590. This article utilized MSC1 primed MSCs and MSC2 primed MSCs to produce differential effects on tumor growth both in vitro and in vivo

  46. Griffin MD, Ryan AE, Alagesan S, Lohan P, Treacy O, Ritter T (2013) Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunol Cell Biol 91(1):40–51. doi:10.1038/icb.2012.67

    Article  CAS  PubMed  Google Scholar 

  47. • Schnabel LV, Pezzanite LM, Antczak DF, Felippe MJ, Fortier LA (2014) Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro. Stem Cell Res Ther 5(1):13. doi:10.1186/scrt402. This article highlights how differences in MHC class II expression on MSCs has an impact on their immunogenicity and immunomodulatory capabilities in vivo

  48. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106(13):4057–4065. doi:10.1182/blood-2005-03-1004

    Article  CAS  PubMed  Google Scholar 

  49. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 171(7):3426–3434. doi:10.4049/jimmunol.171.7.3426

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The referenced work from the authors of this manuscript was supported by Empire State Stem Cell Fund Contract #C024400 (LAF), the Grayson-Jockey Club Research Foundation, Inc. (LAF), stipend funding from the Cornell University College of Veterinary Medicine (JMC), and National Institutes of Health Grant #1K08AR060875-01A1 (LVS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Fortier.

Additional information

This article is part of the Topical collection on Tissue Engineering and Regeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassano, J.M., Schnabel, L.V., Betancourt, A.M. et al. Mesenchymal Stem Cell Therapy: Clinical Progress and Opportunities for Advancement. Curr Pathobiol Rep 3, 1–7 (2015). https://doi.org/10.1007/s40139-015-0064-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0064-4

Keywords

Navigation