Skip to main content
Log in

Emerging Clinical Applications of 4D Flow MR in the Heart and Aorta

  • Cardiovascular Imaging (A Bierhals, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Review the current literature, focusing on potential clinical applications of time-resolved 3-dimensional phase contrast imaging (4D flow) in the thorax.

Recent Findings

Magnetic resonance imaging has become an important diagnostic tool in the evaluation of the heart and great vessels, complimenting echocardiography in routine clinical practice. Advances in 4D flow now allow for comprehensive modeling of blood flow in the thorax in a single ECG-gated and respiratory-gated volumetric acquisition. 4D Flow modeling of preferential flow through shunts, eccentric jets related to valvular disease, helical flow in aneurysms, shear wall stress around atherosclerotic plaque, and pulse wave pressures within the aorta is now possible, and may lead to improved prognostication and management of complex cardiovascular pathology.

Summary

The physiologic data obtained with 4D flow MR has provided new insight into a wide range of cardiovascular pathology, from congenital heart disease, bicuspid aortopathy, and aortic coarction to aortic aneurysms, atherosclerotic plaque, and aortic dissection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Powell AJ, Maier SE, Chung T, Geva T. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol. 2014;21(2):104–10.

    Article  Google Scholar 

  2. Beerbaum P, Körperich H, Barth P, Esdorn H, Gieseke J, Meyer H. Noninvasive quantification of left-to-right shunt in pediatric patients phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001;103(20):2476–82.

    Article  CAS  PubMed  Google Scholar 

  3. Cawley PJ, Maki JH, Otto CM. Cardiovascular magnetic resonance imaging for valvular heart disease technique and validation. Circulation. 2009;119(3):468–78.

    Article  PubMed  Google Scholar 

  4. Wigström L, Sjöqvist L, Wranne B. Temporally resolved 3D phase-contrast imaging. Magn Reson Med. 1996;36(5):800–3.

    Article  PubMed  Google Scholar 

  5. Wigström L, Ebbers T, Fyrenius A, Karlsson M, Engvall J, Wranne B, et al. Particle trace visualization of intracardiac flow using time-resolved 3D phase contrast MRI. Magn Reson Med. 1999;41(4):793–9.

    Article  PubMed  Google Scholar 

  6. Markl M, Chan FP, Alley MT, Wedding KL, Draney MT, Elkins CJ, et al. Time-resolved three-dimensional phase-contrast MRI. J Magn Reson Imaging. 2003;17(4):499–506.

    Article  PubMed  Google Scholar 

  7. Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, et al. Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging JMRI. 2010;32(3):677–83.

    Article  PubMed  Google Scholar 

  8. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol. 1985;5(3):293–302.

    Article  CAS  Google Scholar 

  9. He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng. 1996;118(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  10. Apitz C, Webb GD, Redington AN. Tetralogy of fallot. Lancet. 2009;374(9699):1462–71.

    Article  CAS  PubMed  Google Scholar 

  11. Rebergen SA, van der Wall EE, Doornbos J, de Roos A. Magnetic resonance measurement of velocity and flow: technique, validation, and cardiovascular applications. Am Heart J. 1993;126(6):1439–56.

    Article  CAS  PubMed  Google Scholar 

  12. Sørensen TS, Beerbaum P, Körperich H, Pedersen EM. Three-dimensional, isotropic MRI: a unified approach to quantification and visualization in congenital heart disease. Int J Cardiovasc Imaging. 2005;21(2–3):283–92.

    Article  PubMed  Google Scholar 

  13. Vasanawala SS, Hanneman K, Alley MT, Hsiao A. Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging. 2015;42(4):870–86.

    Article  PubMed  Google Scholar 

  14. Firmin DN, Nayler GL, Klipstein RH, Underwood SR, Rees RS, Longmore DB. In vivo validation of MR velocity imaging. J Comput Assist Tomogr. 1987;11(5):751–6.

    Article  CAS  PubMed  Google Scholar 

  15. Be’eri E, Maier SE, Landzberg MJ, Chung T, Geva T. In vivo evaluation of Fontan pathway flow dynamics by multidimensional phase-velocity magnetic resonance imaging. Circulation. 1998;8(25):2873–82.

    Article  Google Scholar 

  16. Valverde I, Nordmeyer S, Uribe S, Greil G, Berger F, Kuehne T, et al. Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4D velocity acquisition. J Cardiovasc Magn Reson. 2012;14(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hsiao A, Alley MT, Massaband P, Herfkens RJ, Chan FP, Vasanawala SS. Improved cardiovascular flow quanfitication with time-resolved volumetric phase-contrast MRI. Pediatr Radiol. 2011;41(6). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861881/.

  18. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhäll C-J, Ebbers T, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17(1):1–19.

    Article  Google Scholar 

  19. Uribe S, Beerbaum P, Sørensen TS, Rasmusson A, Razavi R, Schaeffter T. Four-dimensional (4D) flow of the whole heart and great vessels using real-time respiratory self-gating. Magn Reson Med. 2009;62(4):984–92.

    Article  PubMed  Google Scholar 

  20. Valverde I, Simpson J, Schaeffter T, Beerbaum P. 4D phase-contrast flow cardiovascular magnetic resonance: comprehensive quantification and visualization of flow dynamics in atrial septal defect and partial anomalous pulmonary venous return. Pediatr Cardiol. 2010;31(8):1244–8.

    Article  PubMed  Google Scholar 

  21. • Hanneman K, Sivagnanam M, Nguyen ET, Wald R, Greiser A, Crean AM, et al. Magnetic resonance assessment of pulmonary (QP) to systemic (QS) flows using 4D phase-contrast imaging: pilot study comparison with standard through-plane 2D phase-contrast imaging. Acad Radiol. 2014;21(8):1002–8. Validates the use of 4D flow for detection and quantification of intracardiac shunts by comparing 4D flow and transition 2D phase contrast techniques in patients with suspected cardiac shunts.

  22. Hsiao A, Tariq U, Alley MT, Lustig M, Vasanawala SS. Inlet and outlet valve flow and regurgitant volume may be directly and reliably quantified with accelerated, volumetric phase-contrast MRI. J Magn Reson Imaging JMRI. 2015;41(2):376–85.

    Article  PubMed  Google Scholar 

  23. van der Hulst AE, Westenberg JJM, Kroft LJM, Bax JJ, Blom NA, de Roos A, et al. Tetralogy of fallot: 3D velocity-encoded MR imaging for evaluation of right ventricular valve flow and diastolic function in patients after correction. Radiology. 2010;256(3):724–34.

    Article  PubMed  Google Scholar 

  24. Geiger J, Markl M, Jung B, Grohmann J, Stiller B, Langer M, et al. 4D-MR flow analysis in patients after repair for tetralogy of fallot. Eur Radiol. 2011;21(8):1651–7.

    Article  CAS  PubMed  Google Scholar 

  25. François CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E, Landgraf BR, et al. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. J Cardiovasc Magn Reson. 2012;14(1):16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Uribe S, Bächler P, Valverde I, Crelier GR, Beerbaum P, Tejos C, et al. Hemodynamic assessment in patients with one-and-a-half ventricle repair revealed by four-dimensional flow magnetic resonance imaging. Pediatr Cardiol. 2012;34(2):447–51.

    Article  PubMed  Google Scholar 

  27. Geiger J, Hirtler D, Bürk J, Stiller B, Arnold R, Jung B, et al. Postoperative pulmonary and aortic 3D haemodynamics in patients after repair of transposition of the great arteries. Eur Radiol. 2013;24(1):200–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Broadhouse KM, Price AN, Finnemore AE, Cox DJ, Edwards AD, Hajnal JV, et al. 4D phase contrast MRI in the preterm infant: visualisation of patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed. 2015;100(2):F164–F164.

    Article  PubMed  Google Scholar 

  29. Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol. 2010;55(25):2789–800.

    Article  PubMed  Google Scholar 

  30. den Reijer PM, Sallee D, van der Velden P, Zaaijer ER, Parks WJ, Ramamurthy S, et al. Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:4.

    Article  Google Scholar 

  31. Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010;255(1):53–61.

    Article  PubMed  Google Scholar 

  32. Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, Fedak PW, et al. Bicuspid aortic cusp fusion morphology alters aortic 3D outflow patterns, wall shear stress and expression of aortopathy. Circulation. 2014;129:673–82.

    Article  CAS  PubMed  Google Scholar 

  33. Sigovan M, Hope MD, Dyverfeldt P, Saloner D. Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J Magn Reson Imaging. 2011;34(5):1226–30.

    Article  PubMed  Google Scholar 

  34. •• Hope MD, Sigovan M, Wrenn SJ, Saloner D, Dyverfeldt P. Magnetic resonance imaging hemodynamic markers of progressive bicuspid aortic valve related aortic disease. J Magn Reson Imaging JMRI. 2014;40(1):140–5. Assessed risk factors for ascending aortic aneurysm growth in patients with bicuspid aortic valve and controls with tricuspid aortic valve. Proposed flow displacement and peak velocity as a risk factors for aortic growth.

  35. Hope MD, Hope TA, Crook SES, Ordovas KG, Urbania TH, Alley MT, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4(7):781–7.

    Article  PubMed  Google Scholar 

  36. Hope MD, Wrenn J, Sigovan M, Foster E, Tseng EE, Saloner D. Imaging biomarkers of aortic disease increased growth rates with eccentric systolic flow. J Am Coll Cardiol. 2012;60(4):356–7.

    Article  PubMed  Google Scholar 

  37. Shih M-CP, Tholpady A, Kramer CM, Sydnor MK, Hagspiel KD. Surgical and endovascular repair of aortic coarctation: normal findings and appearance of complications on CT angiography and MR angiography. Am J Roentgenol. 2006;187(3):W302–12.

    Article  Google Scholar 

  38. Brown ML, Burkhart HM, Connolly HM, Dearani JA, Cetta F, Li Z, et al. Coarctation of the aorta lifelong surveillance is mandatory following surgical repair. J Am Coll Cardiol. 2013;62(11):1020–5.

    Article  PubMed  Google Scholar 

  39. Holmqvist C, Ståhlberg F, Hanséus K, Hochbergs P, Sandström S, Larsson E-M, et al. Collateral flow in coarctation of the aorta with magnetic resonance velocity mapping: correlation to morphological imaging of collateral vessels. J Magn Reson Imaging. 2002;15(1):39–46.

    Article  PubMed  Google Scholar 

  40. Hope MD, Meadows AK, Hope TA, Ordovas KG, Saloner D, Reddy GP, et al. Clinical evaluation of aortic coarctation with 4D flow MR imaging. J Magn Reson Imaging. 2010;31(3):711–8.

    Article  PubMed  Google Scholar 

  41. Frydrychowicz A, Markl M, Hirtler D, Harloff A, Schlensak C, Geiger J, et al. Aortic hemodynamics in patients with and without repair of aortic coarctation: in vivo analysis by 4D flow-sensitive magnetic resonance imaging. Invest Radiol. 2011;46:317–25.

    PubMed  Google Scholar 

  42. White CR, Frangos JA. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos Trans R Soc. 2007;362(1484):1459–67.

    Article  CAS  Google Scholar 

  43. Keshavarz-Motamed Z, Garcia J, Gaillard E, Maftoon N, Labbio GD, Cloutier G, et al. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry. Exp Fluids. 2014;55(3):1–16.

    Article  Google Scholar 

  44. Goubergrits L, Riesenkampff E, Yevtushenko P, Schaller J, Kertzscher U, Hennemuth A, et al. MRI-based computational fluid dynamics for diagnosis and treatment prediction: clinical validation study in patients with coarctation of aorta. J Magn Reson Imaging. 2015;41(4):909–16.

    Article  PubMed  Google Scholar 

  45. Rengier F, Delles M, Eichhorn J, Azad Y-J, von Tengg-Kobligk H, Ley-Zaporozhan J, et al. Noninvasive 4D pressure difference mapping derived from 4D flow MRI in patients with repaired aortic coarctation: comparison with young healthy volunteers. Int J Cardiovasc Imaging. 2015;31(4):823–30.

    Article  PubMed  Google Scholar 

  46. Srichai MB, Lim RP, Wong S, Lee VS. Cardiovascular applications of phase-contrast MRI. Am J Roentgenol. 2009;192(3):662–75.

    Article  Google Scholar 

  47. van Ooij P, Potters WV, Nederveen AJ, Allen BD, Collins J, Carr J, et al. A methodology to detect abnormal relative wall shear stress on the full surface of the thoracic aorta using four-dimensional flow MRI. Magn Reson Med. 2015;73(3):1216–27.

    Article  PubMed  Google Scholar 

  48. von Knobelsdorff-Brenkenhoff F, Karunaharamoorthy A, Trauzeddel RF, Barker AJ, Blaszczyk E, Markl M, et al. Evaluation of aortic blood flow and wall shear stress in aortic stenosis and its association with left ventricular remodeling. Circ Cardiovasc Imaging. 2016;9(3):e004038.

    Google Scholar 

  49. Kozerke S, Hasenkam JM, Pedersen EM, Boesiger P. Visualization of flow patterns distal to aortic valve prostheses in humans using a fast approach for cine 3D velocity mapping. J Magn Reson Imaging. 2001;13(5):690–8.

    Article  CAS  PubMed  Google Scholar 

  50. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.

    Article  CAS  PubMed  Google Scholar 

  51. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995;75(3):519–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJAP, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113(23):2744–53.

    Article  PubMed  Google Scholar 

  53. Chatzizisis YS, Jonas M, Coskun AU, Beigel R, Stone BV, Maynard C, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress an intravascular ultrasound and histopathology natural history study. Circulation. 2008;117(8):993–1002.

    Article  PubMed  Google Scholar 

  54. Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO, et al. Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol. 2005;45(6):846–54.

    Article  PubMed  Google Scholar 

  55. Irace C, Cortese C, Fiaschi E, Carallo C, Farinaro E, Gnasso A. Wall shear stress is associated with intima-media thickness and carotid atherosclerosis in subjects at low coronary heart disease risk. Stroke. 2004;35(2):464–8.

    Article  PubMed  Google Scholar 

  56. Markl M, Brendecke SM, Simon J, Barker AJ, Weiller C, Harloff A. Co-registration of the distribution of wall shear stress and 140 complex plaques of the aorta. Magn Reson Imaging. 2013;31(7):1156–62.

    Article  PubMed  Google Scholar 

  57. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med. 2008;60(5):1218–31.

    Article  CAS  PubMed  Google Scholar 

  58. Frydrychowicz A, Stalder AF, Russe MF, Bock J, Bauer S, Harloff A, et al. Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J Magn Reson Imaging. 2009;30(1):77–84.

    Article  PubMed  Google Scholar 

  59. van Ooij P, Powell AL, Potters WV, Barker AJ, Markl M. Reproducibility and inter-observer variability of velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J Cardiovasc Magn Reson. 2015;17(S1):1–2.

    Google Scholar 

  60. Harloff A, Nußbaumer A, Bauer S, Stalder AF, Frydrychowicz A, Weiller C, et al. In vivo assessment of wall shear stress in the atherosclerotic aorta using flow-sensitive 4D MRI. Magn Reson Med. 2010;63(6):1529–36.

    Article  PubMed  Google Scholar 

  61. Harloff A, Simon J, Brendecke S, Assefa D, Helbing T, Frydrychowicz A, et al. Complex plaques in the proximal descending aorta an underestimated embolic source of stroke. Stroke. 2010;41(6):1145–50.

    Article  PubMed  Google Scholar 

  62. Oladokun D, Patterson BO, Sobocinski J, Karthikesalingam A, Loftus I, Thompson MM, et al. Systematic review of the growth rates and influencing factors in thoracic aortic aneurysms. Eur J Vasc Endovasc Surg. 2016;51(5):674–81.

    Article  CAS  PubMed  Google Scholar 

  63. Evangelista A. Imaging aortic aneurysmal disease. Heart. 2014;100(12):909–15.

    Article  PubMed  Google Scholar 

  64. Markl M, Draney MT, Hope MD, Levin JM, Chan FP, Alley MT, et al. Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr. 2004;28(4):459–68.

    Article  PubMed  Google Scholar 

  65. Hope TA, Markl M, Wigström L, Alley MT, Miller DC, Herfkens RJ. Comparison of flow patterns in ascending aortic aneurysms and volunteers using four-dimensional magnetic resonance velocity mapping. J Magn Reson Imaging. 2007;26(6):1471–9.

    Article  PubMed  Google Scholar 

  66. Weigang E, Kari FA, Beyersdorf F, Luehr M, Etz CD, Frydrychowicz A, et al. Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns in ascending aortic aneurysms. Eur J Cardiothorac Surg. 2008;34(1):11–6.

    Article  PubMed  Google Scholar 

  67. Bieging ET, Frydrychowicz A, Wentland A, Landgraf BR, Johnson KM, Wieben O, et al. In vivo three-dimensional MR wall shear stress estimation in ascending aortic dilatation. J Magn Reson Imaging. 2011;33(3):589–97.

    Article  PubMed  Google Scholar 

  68. Bürk J, Blanke P, Stankovic Z, Barker A, Russe M, Geiger J, et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson. 2012;14(1):1–11.

    Article  Google Scholar 

  69. Coselli JS. Thoracoabdominal aortic aneurysms: experience with 372 patients. J Card Surg. 1994;9(6):638–47.

    Article  CAS  PubMed  Google Scholar 

  70. Neya K, Omoto R, Kyo S, Kimura S, Yokote Y, Takamoto S, et al. Outcome of Stanford type B acute aortic dissection. Circulation. 1992;86:1–7.

    Article  Google Scholar 

  71. Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Dissection of the aorta and dissecting aortic aneurysms. Improving early and long-term surgical results. Circulation. 1990;82:24–38.

    Google Scholar 

  72. Trimarchi S, Nienaber CA, Rampoldi V, Myrmel T, Suzuki T, Bossone E, et al. Role and results of surgery in acute type B aortic dissection insights from the international registry of acute aortic dissection (IRAD). Circulation. 2006;114:357.

    Article  Google Scholar 

  73. Nienaber CA, Kische S, Rousseau H, Eggebrecht H, Rehders TC, Kundt G, et al. Endovascular repair of type B aortic dissection long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ Cardiovasc Interv. 2013;6:407–16.

    Article  CAS  PubMed  Google Scholar 

  74. Erbel R, Oelert H, Meyer J, Puth M, Mohr-Katoly S, Hausmann D, et al. Effect of medical and surgical therapy on aortic dissection evaluated by transesophageal echocardiography. Implications for prognosis and therapy. The European Cooperative Study Group on Echocardiography. Circulation. 1993;87(5):1604–15.

    Article  CAS  PubMed  Google Scholar 

  75. •• Clough RE, Waltham M, Giese D, Taylor PR, Schaeffter T. A new imaging method for assessment of aortic dissection using four-dimensional phase contrast magnetic resonance imaging. J Vasc Surg. 2012;55(4):914–23. First investigation study to characterize the flow patterns in descending aortic dissection with 4D flow. Found that stroke volume, velocity, distal dominant entry tears, and helical flow are related to the rate of aortic expansion.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Owen.

Ethics declarations

Conflict of Interest

Joseph W. Owen and Constantine A. Raptis each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Cardiovascular Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owen, J.W., Raptis, C.A. Emerging Clinical Applications of 4D Flow MR in the Heart and Aorta. Curr Radiol Rep 4, 62 (2016). https://doi.org/10.1007/s40134-016-0188-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-016-0188-2

Keywords

Navigation