Skip to main content
Log in

Postoperative pulmonary and aortic 3D haemodynamics in patients after repair of transposition of the great arteries

  • Pediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To characterise aortic and pulmonary haemodynamics and investigate the correlation with post-surgical anatomy in patients with dextro-transposition of the great arteries (d-TGA).

Methods

Four-dimensional (4D) MRI was performed in 17 patients after switch repair of TGA and 12 healthy controls (age, 11.9 ± 5.4 vs 23.3 ± 1.6 years). Patients were divided according to the pulmonary trunk (TP) position in relation to the ascending aorta (AAo): anterior (n = 10) and right/left anterior position (n = 7). Analysis included visual grading (ranking 0–2) of pulmonary and aortic vortical and helical flow, flow velocity quantification, blood-flow distribution to the right and left pulmonary arteries (flow ratio rPA:lPA), and vessel lumen areas.

Results

Anterior TP position was associated with increased vortices in six out of ten patients compared with right anterior TP position (one out of seven) and controls (none). Reduced systolic lPA and TP lumina in patients resulted in significantly increased peak systolic velocities (P < 0.001). Flow ratio rPA:lPA was more heterogeneous in patients (rPA:lPA = 1.56 ± 0.78 vs volunteers 1.09 ± 0.15; P < 0.05) with predominant flow to the rPA. Eleven patients presented increased helices in the AAo (grade 1.6).

Conclusions

Evaluation of post-surgical haemodynamics in TGA patients revealed increased vortical flow for anterior TP position, asymmetric flow and increased systolic flow velocity in the pulmonary arteries owing to reduced vascular lumina.

Key Points

3D phase contrast MRI with velocity encoding (4D MRI) has numerous cardiovascular applications

4D MRI demonstrates postoperative haemodynamics following surgery for transposition of the great arteries

Flow visualisation depicted enhanced pulmonary vortices in the anterior pulmonary trunk

Narrow pulmonary arterial systolic lumina resulted in increased peak systolic velocities

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAo:

Ascending aorta

lPA:

Left pulmonary artery

PC:

Phase contrast

rPA:

Right pulmonary artery

TP:

Pulmonary trunk

References

  1. Martins P, Castela E (2008) Transposition of the great arteries. Orphanet J Rare Dis 3:27

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jatene AD, Fontes VF, Paulista PP et al (1976) Anatomic correction of transposition of the great vessels. J Thorac Cardiovasc Surg 72:364–370

    CAS  PubMed  Google Scholar 

  3. Lecompte Y, Zannini L, Hazan E et al (1981) Anatomic correction of transposition of the great arteries. J Thorac Cardiovasc Surg 82:629–631

    CAS  PubMed  Google Scholar 

  4. Massin MM, Nitsch GB, Däbritz S, Seghave MC, Messmer BJ, von Bernuth G (1998) Growth of pulmonary artery after arterial switch operation for simple transposition of the great arteries. Eur J Pediatr 157:95–100

    Article  CAS  PubMed  Google Scholar 

  5. McMahon CJ, Ravekes WJ, O’Brian Smith E et al (2004) Risk factors for neo-aortic root enlargement and aortic regurgitation following arterial switch operation. Pediatr Cardiol 25:329–335

    Article  CAS  PubMed  Google Scholar 

  6. Hutter PA, Kreb DL, Mantel SF, Hitchcock JF, Meijboom EJ, Bennink GB (2002) Twenty-five years’ experience with arterial switch operation. J Thorac Cardiovasc Surg 124:790–797

    Article  CAS  PubMed  Google Scholar 

  7. De Koning WB, van Osch-Grevers M, Ten Harkel AD et al (2008) Follow-up outcomes 10 years after arterial switch operation for transposition of the great arteries: comparison of cardiological health status and health-related quality of life to those of a normal reference population. Eur J Pediatr 167:995–1004

    Article  PubMed  Google Scholar 

  8. Fricke TA, d’Udekem Y, Richardson M et al (2012) Outcomes of the arterial switch operation for transposition of the great arteries: 25 years of experience. Ann Thorac Surg 94:139–145

    Article  PubMed  Google Scholar 

  9. Kempny A, Wustmann K, Borgia F et al (2012) Outcome in adult patients after arterial switch operation for transposition of the great arteries. Int J Cardiol. doi:10.1016/j.ijcard.2012.06.066

    Google Scholar 

  10. Warnes CA (2006) Transposition of the great arteries. Circulation 114:2699–2709

    Article  PubMed  Google Scholar 

  11. Achenbach S, Barkhausen J, Beer M et al (2012) Consensus recommendations of the German Radiology Society (DRG), the German Cardiac Society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Rofo 184:345–368

    Article  CAS  PubMed  Google Scholar 

  12. Gutberlet M, Boeckel T, Hosten N et al (2000) Arterial switch procedure for D-transposition of the great arteries: quantitative midterm evaluation of hemodynamic changes with cine MR imaging and phase-shift velocity mapping—initial experience. Radiology 214:467–475

    Article  CAS  PubMed  Google Scholar 

  13. Blakenberg F, Rhee J, Hardy C, Helton G, Higgins SS, Higgins CB (1994) MRI vs echocardiography in the evaluation of the Jatene procedure. J Comput Assist Tomogr 18:749–754

    Article  CAS  PubMed  Google Scholar 

  14. Hardy CE, Helton GJ, Kondo C, Higgins SS, Young NJ, Higgins CB (1994) Usefulness of magnetic resonance imaging for evaluating great-vessel anatomy after arterial switch operation for D-transposition of the great arteries. Am Heart J 128:326–332

    Article  CAS  PubMed  Google Scholar 

  15. Cohen MD, Johnson T, Ramrakhiani (2010) MRI of surgical repair of transposition of the great arteries. AJR Am J Roentgenol 191:250–260

    Article  Google Scholar 

  16. Weiss F, Habermann CR, Lilje C et al (2005) MRI of pulmonary arteries in follow-up after arterial-switch-operation (ASO) for transposition of the great arteries (d-TGA). Rofo 177:849–855

    Article  CAS  PubMed  Google Scholar 

  17. Markl M, Geiger J, Kilner PJ et al (2011) Time-resolved three-dimensional magnetic resonance velocity mapping of cardiovascular flow paths in volunteers and patients with Fontan circulation. Eur J Cardiothorac Surg 39:206–212

    Article  PubMed  Google Scholar 

  18. Geiger J, Markl M, Jung B et al (2011) 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol 21:1651–1657

    Article  CAS  PubMed  Google Scholar 

  19. Markl M, Geiger J, Jung B, Hirtler D, Arnold R (2012) Noninvasive evaluation of 3D hemodynamics in a complex case of single ventricle physiology. J Magn Reson Imaging 35:933–937

    Article  PubMed  Google Scholar 

  20. Uribe S, Bächler P, Valverde I, Crelier GR, Beerbaum P, Tejos C, Irarrazaval P (2013) Hemodynamic assessment in patients with one-and-a-half ventricle repair revealed by four-dimensional flow magnetic resonance imaging. Pediatr Cardiol 34:447–451

    Article  PubMed  Google Scholar 

  21. Francois CJ, Srinivasan S, Schiebler ML et al (2012) 4d cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of fallot. J Cardiovasc Magn Reson 14:16

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hope MD, Hope TA, Meadows AK et al (2010) Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255:53–61

    Article  PubMed  Google Scholar 

  23. Barker AJ, Markl M, Bürk J et al (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5:457–466

    Article  PubMed  Google Scholar 

  24. Valverde I, Nordmeyer S, Uribe S et al (2012) Systemic-to-pulmonary collateral flow in patients with palliated univentricular heart physiology: measurement using cardiovascular magnetic resonance 4d velocity acquisition. J Cardiovasc Magn Reson 14:25

    Article  PubMed Central  PubMed  Google Scholar 

  25. Sundareswaran KS, Haggerty CM, de Zelicourt D et al (2012) Visualization of flow structures in fontan patients using 3-dimensional phase contrast magnetic resonance imaging. J Thorac Cardiovasc Surg 143:1108–1116

    Article  PubMed Central  PubMed  Google Scholar 

  26. Frydrychowicz A, Bley TA, Zadeh Z et al (2008) Image analysis in time-resolved large field of view 3D MR-angiography at 3T. J Magn Reson Imaging 28:1116–1124

    Article  PubMed  Google Scholar 

  27. Markl M, Harloff A, Bley TA et al (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831

    Article  PubMed  Google Scholar 

  28. Burman ED, Keegan J, Kilner P (2008) Aortic root measurement by cardiovascular magnetic resonance. Circ Cardiovasc Imaging 1:104–113

    Article  PubMed  Google Scholar 

  29. Vasan RS, Larson MG, Benjamin EJ, Levy D (1995) Echocardiographic reference values for aortic root size: the Framingham Heart Study. J Am Soc Echocardiogr 8:793–800

    Article  CAS  PubMed  Google Scholar 

  30. Gautier M, Detaint D, Fermanian C et al (2010) Nomograms for aortic root diameters in children using two-dimensional echocardiography. Am J Cardiol 105:888–894

    Article  PubMed  Google Scholar 

  31. Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317:1098

    CAS  PubMed  Google Scholar 

  32. Bock J, Frydrychowicz A, Stalder AF et al (2010) 4d phase contrast MRI at 3T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 63:330–338

    Article  PubMed  Google Scholar 

  33. Buonocore MH (1998) Visualizing blood flow patterns using streamlines, arrows, and particle paths. Magn Reson Med 40:210–226

    Article  CAS  PubMed  Google Scholar 

  34. Abolmaali ND, Esmaeili A, Feist P et al (2004) Reference values of MRI flow measurements of the pulmonary outflow tract in healthy children. Rofo 176:837–845

    Article  CAS  PubMed  Google Scholar 

  35. Grotenhuis HB, Kroft LJM, van Elderen SGC et al (2007) Right ventricular hypertrophy and diastolic dysfunction in arterial switch patients without pulmonary artery stenosis. Heart 93:1604–1608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tang T, Chiu I-S, Chen H-C, Cheng K-Y, Chen S-J (2001) Comparison of pulmonary arterial flow phenomena in spiral and Lecompte models by computational fluid dynamics. J Thorac Cardiovasc Surg 122:529–534

    Article  CAS  PubMed  Google Scholar 

  37. Bächler P, Pinochet N, Sotelo J, Crelier G, Irarrazaval P, Tejos C, Uribe S (2013) Assessment of normal flow patterns in the pulmonary circulation by using 4D magnetic resonance velocity mapping. Magn Reson Imaging 31:178–188

    Article  PubMed  Google Scholar 

  38. Angeli E, Raisky O, Bonnet D, Sidi D, Vouhé PR (2008) Late reoperations after neonatal arterial switch operation for transposition of the great arteries. Eur J Cardiothorac Surg 34:32–36

    Article  PubMed  Google Scholar 

  39. Losay J, Touchot A, Capderou A et al (2006) Aortic valve regurgitation after arterial switch operation for transposition of the great arteries: incidence, risk factors, and outcome. J Am Coll Cardiol 47:2057–2062

    Article  PubMed  Google Scholar 

  40. Schwartz ML, Gauvreau K, del Nido P, Mayer J, Colan SD (2004) Long-term predictors of aortic root dilatation and aortic regurgitation after arterial switch operation. Circulation 110:128–132

    Article  Google Scholar 

  41. Pees C, Laufer G, Michel-Behnke I (2013) Similarities and differences of the aortic root after arterial switch and Ross operation in children. Am J Cardiol 111:125–130

    Article  PubMed  Google Scholar 

  42. Geiger J, Markl M, Herzer L et al (2012) Aortic flow patterns in patients with Marfan syndrome assessed by flow-sensitive 4D MRI. J Magn Reson Imaging 35:594–600

    Article  PubMed  Google Scholar 

  43. Stalder AF, Russe MF, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60:1218–1231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was undertaken with grant support from the National Heart, Lung, And Blood Institute of the National Institutes of Health under Award Number R01HL115828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Geiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, J., Hirtler, D., Bürk, J. et al. Postoperative pulmonary and aortic 3D haemodynamics in patients after repair of transposition of the great arteries. Eur Radiol 24, 200–208 (2014). https://doi.org/10.1007/s00330-013-2998-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2998-4

Keywords

Navigation