Skip to main content
Log in

Therapeutic potential of C2N as targeted drug delivery system for fluorouracil and nitrosourea to treat cancer: a theoretical study

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Conventional drug delivery systems suffer from poor absorption and poor bioavailability at the target site due to either very weak or very strong adsorption of drug on the carrier. Porous 2D nanostructures can offer better drug delivery system provided the system chosen has suitable cavity with heteroatoms for reasonable interaction with drug molecules. C2N is a surface of choice in this regard; therefore, potential of C2N surface as drug delivery system for nitrosourea and fluorouracil (drugs) is explored here. Both nitrosourea and fluorouracil interacted with the electron rich central cavity of C2N. Different structural and electronic parameters show that both drugs have good adsorption on C2N surface and thus can be carried to the target easily. Values of interaction and basis set superposition error (BSSE) corrected energies are slightly higher for nitrosourea@C2N as compared to fluorouracil@C2N. While all other properties such as non-covalent interaction (NCI), symmetry-adapted perturbation theory (SAPT0), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), electron density difference (EDD) and frontier molecular orbital (FMO) analyses illustrate that C2N is better carrier for nitrosourea than fluorouracil. The off-loading of drug is explored through molecular dynamics simulations which reveal that slightly elevated temperature can cause off-loading of the drug at the target cancer cell, which usually have temperature higher than the normal cells. MD simulations reveal that atomic interactions between the drugs and C2N are destabilized at higher temperatures. Comparison of the loading and off-loading mechanism with other surfaces reported in the literature reveal that C2N is a better carrier for these drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mozaffari, S., Seyedabadi, S., Alemzadeh, E.: Anticancer efficiency of doxorubicin and berberine-loaded PCL nanofibers in preventing local breast cancer recurrence. J. Drug. Deliv. Sci. Technol. 67, 102984 (2022)

    Article  CAS  Google Scholar 

  2. Tyagi, K., Dixit, T., Venkatesh, V.: Recent advances in catalytic anticancer drugs: mechanistic investigations and future prospects. Inorganica Chim. Acta. 533, 120754 (2022)

    Article  CAS  Google Scholar 

  3. Popovtzer, R., Neufeld, T., Popovtzer, A., et al.: Electrochemical lab on a chip for high-throughput analysis of anticancer drugs efficiency. Nanomed. Nanotechnol. Biol. Med. 4, 121–126 (2008)

    Article  CAS  Google Scholar 

  4. Pan, X., Wang, C., Wang, F., et al.: Development of 5-Fluorouracil derivatives as anticancer agents. Curr. Med. Chem. 18, 4538–4556 (2011)

    Article  CAS  Google Scholar 

  5. Moertel, C.G.: Gastrointestinal cancer. Treatment with fluorouracil-nitrosourea combinations. JAMA 235, 2135–2136 (1976)

    Article  CAS  Google Scholar 

  6. Schallreuter, K.U., Gleason, F.K., Wood, J.M.: The mechanism of action of the nitrosourea anti-tumor drugs on thioredoxin reductase, glutathione reductase and ribonucleotide reductase. Biochim. Biophys. Acta Mol. Cell Res. 1054, 14–20 (1990)

    Article  CAS  Google Scholar 

  7. Glynn, P.W.: Mechanism of Action of Nitrosoureas. In: Antineoplastic and Immunosuppressive Agents, pp. 65–84. Springer, Berlin, Heidelberg (1975)

    Google Scholar 

  8. Gnewuch, C.T., Sosnovsky, G.: A critical appraisal of the evolution of N-nitrosoureas as anticancer drugs. Chem. Rev. 97, 829–1014 (1997)

    Article  CAS  Google Scholar 

  9. Longley, D.B., Harkin, D.P., Johnston, P.G.: 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer. 3, 330–338 (2003)

    Article  CAS  Google Scholar 

  10. Santi, D.V., McHenry, C.S., Sommer, H.: Mechanism of interaction of thymidylate synthetase with 5-fluorodeoxyuridylate. Biochemistry 13, 471–481 (1974)

    Article  CAS  Google Scholar 

  11. Glazer, R.I., Lloyd, L.S.: Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol. Pharmacol. 21, 468–473 (1982)

    CAS  Google Scholar 

  12. Wohlhueter, R.M., McIvor, R.S., Plagemann, P.G.W.: Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J. Cell. Physiol. 104, 309–319 (1980)

    Article  CAS  Google Scholar 

  13. Doong, S.L., Dolnick, B.J.: 5-Fluorouracil substitution alters pre-mRNA splicing in vitro. J. Biol. Chem. 263, 4467–4473 (1988)

    Article  CAS  Google Scholar 

  14. Giacchetti, S., Perpoint, B., Zidani, R., et al.: Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil–leucovorin as first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. 18, 136 (2000)

    Article  CAS  Google Scholar 

  15. Zou, Q., Xing, P., Wei, L., et al.: Gene2vec: Gene Subsequence Embedding for Prediction of Mammalian N6-Methyladenosine Sites from mRNA. RNA. 25, .069112.118 (2018).

  16. Zhao, B., Zhang, X., Yu, T., et al.: Discovery of thiosemicarbazone derivatives as effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates. Acta Pharm. Sin. B. 11, 203–221 (2021)

    Article  CAS  Google Scholar 

  17. Wei, T., Shixiang, W., Zhen, Y., et al.: Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics. (2018)

  18. Zou, Y., Wu, H., Guo, X., et al.: MK-FSVM-SVDD: a multiple kernel-based fuzzy SVM model for predicting dna-binding proteins via support vector data description. Curr. Bioinform. 16, 274–283 (2021)

    Article  CAS  Google Scholar 

  19. Chen, L., He, M., Zhang, M., et al.: The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol. Ther. 226, 107868 (2021)

    Article  CAS  Google Scholar 

  20. Jiang, Q., Jin, S., Jiang, Y., et al.: Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol. Neurobiol. 54, 594–600 (2017)

    Article  CAS  Google Scholar 

  21. Ji, X., Hou, C., Gao, Y., et al.: Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model. Food Funct. 11, 163–173 (2020)

    Article  CAS  Google Scholar 

  22. Ross, J.S., Schenkein, D.P., Pietrusko, R., et al.: Targeted therapies for cancer 2004. Am. J. Clin. Pathol. 122, 598–609 (2004)

    Article  CAS  Google Scholar 

  23. Morgillo, F., Lee, H.Y.: Resistance to epidermal growth factor receptor-targeted therapy. Drug Resist. Updat. 8, 298–310 (2005). ((reviews and commentaries in antimicrobial and anticancer chemotherapy))

    Article  CAS  Google Scholar 

  24. Huang, C.Y., Ju, D.T., Chang, C.F., et al.: A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine 7, 23 (2017)

    Article  Google Scholar 

  25. Joulia, J.M., Pinguet, F., Grosse, P.Y., et al.: Determination of 5-fluorouracil and its main metabolites in plasma by high-performance liquid chromatography: application to a pharmacokinetic study. J. Chromatogr. B Biomed. Appl. 692, 427–435 (1997)

    Article  CAS  Google Scholar 

  26. Wilczewska, A.Z., Niemirowicz, K., Markiewicz, K.H., Car, H.: Nanoparticles as drug delivery systems. Pharmacol. Rep. 64, 1020–1037 (2012)

    Article  CAS  Google Scholar 

  27. Tian, Y., Tian, Z., Dong, Y., et al.: Current advances in nanomaterials affecting morphology, structure, and function of erythrocytes. RSC Adv. 11, 6958–6971 (2021)

    Article  CAS  Google Scholar 

  28. Szefler, B.: Nanotechnology, from quantum mechanical calculations up to drug delivery. Int. J. Nanomed. 13, 6143–6176 (2018)

    Article  CAS  Google Scholar 

  29. Ding, C., Li, Z.: A review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C. Mater. Biol. Appl. 76, 1440–1453 (2017)

    Article  CAS  Google Scholar 

  30. Lee, J.H., Yeo, Y.: Controlled Drug Release from Pharmaceutical Nanocarriers. Chem. Eng. Sci. 125, 75–84 (2015)

    Article  CAS  Google Scholar 

  31. Austin, L.A., Mackey, M.A., Dreaden, E.C., et al.: The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol. 88, 1391–1417 (2014)

    Article  CAS  Google Scholar 

  32. Kudr, J., Haddad, Y., Richtera, L., et al.: Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials. 7, (2017).

  33. Malik, N., Evagorou, E.G., Duncan, R.: Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10, 767–776 (1999)

    Article  CAS  Google Scholar 

  34. Batrakova, E.V., Dorodnych, T.Y., Klinskii, E.Y., et al.: Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br. J. Cancer. 74, 1545–1552 (1996)

    Article  CAS  Google Scholar 

  35. Rosenthal, E., Poizot-Martin, I., Saint-Marc, T., et al.: Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am. J. Clin. Oncol. 25, 57–59 (2002)

    Article  Google Scholar 

  36. Volkov, Y.: Quantum dots in nanomedicine: recent trends, advances and unresolved issues. Biochem. Biophys. Res. Commun. 468, 419–427 (2015)

    Article  CAS  Google Scholar 

  37. Wu, W., Wieckowski, S., Pastorin, G., et al.: Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed. 44, 6358–6362 (2005)

    Article  CAS  Google Scholar 

  38. Mazumdar, P., Choudhury, D., Borgohain, G.: A DFT and molecular dynamics simulation study of single-walled carbon nanotube as a drug delivery system for few model nitrogen mustard drugs. J. Mol. Struct. 1243, 130877 (2021)

    Article  CAS  Google Scholar 

  39. Tan, C., Cao, X., Wu, X.-J., et al.: Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    Article  CAS  Google Scholar 

  40. Luan, B., Zhou, R.: Spontaneous Transport of Single-Stranded DNA through Graphene-MoS(2) Heterostructure Nanopores. ACS Nano 12, 3886–3891 (2018)

    Article  CAS  Google Scholar 

  41. Safdari, F., Raissi, H., Shahabi, M., Zaboli, M.: DFT calculations and molecular dynamics simulation study on the adsorption of 5-fluorouracil anticancer drug on graphene oxide nanosheet as a drug delivery vehicle. J. Inorg. Organomet. Polym. Mater. 27, 805–817 (2017)

    Article  CAS  Google Scholar 

  42. Qusain Afzal, Q., Rafique, J., Jaffar, K., et al.: DFT study of 2D graphitic carbon nitride based preferential targeted delivery of levosimendan, a cardiovascular drug. Comput. Theor. Chem. 1209, 113584 (2022)

    Article  CAS  Google Scholar 

  43. Coleman, J.N., Lotya, M., O’Neill, A., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 LP – 571 (2011)

    Article  Google Scholar 

  44. Lalmi, B., Oughaddou, H., Enriquez, et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)

    Article  Google Scholar 

  45. Watanabe, K., Taniguchi, T., Kanda, H.: Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004)

    Article  CAS  Google Scholar 

  46. Dehghan, B.M., Aghaie, M., Aghaie, H.: Folic acid functionalized boron nitride oxide as targeted drug delivery system for fludarabine and cytarabine anticancer drugs: A DFT study. J. Mol. Liq. 339, 116753 (2021)

    Article  Google Scholar 

  47. Liu, W., Dong, A., Wang, B., et al.: Current advances in black phosphorus-based drug delivery systems for cancer therapy. Adv. Sci. Lett. 8, 2003033 (2021)

    CAS  Google Scholar 

  48. Niknam, P., Jamehbozorgi, S., Rezvani, M., et al.: Understanding delivery and adsorption of Flutamide drug with ZnONS based on: Dispersion-corrected DFT calculations and MD simulations. Phys. E: Low-Dimens. Syst. Nanostructures. 135, 114937 (2022)

    Article  CAS  Google Scholar 

  49. Mahdinia, S., Hajali, N., Zarifi, K., Alipourfard, I., et al.: Delivery of tioguanine anticancer drug by Fe-doped fullerene cage: DFT evaluation of electronic and structural features. Comput. Theor. Chem. 1204, 113401 (2021)

    Article  CAS  Google Scholar 

  50. Abdel-Bary, A.S., Tolan, D.A., Nassar, M.Y., et al.: Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int. J. Biol. Macromol. 154, 621–633 (2020)

    Article  CAS  Google Scholar 

  51. Hossain, Md.R., Hasan, Md.M., Ashrafi, N.E., et al.: Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nanosheets in gaseous and aqueous medium: A comparative DFT and QTAIM insight. Phys. E: Low-Dimens. Syst. Nanostructures. 126, 114483 (2021)

    Article  CAS  Google Scholar 

  52. Hossain, Md.R., Hasan, Md.M., Nishat, M., et al.: DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. J. Mol. Liq. 323, 114627 (2021)

    Article  CAS  Google Scholar 

  53. Rakib, HMd., Mehade, HMd., UdDaula, S.S., et al.: First-principles study of the adsorption of chlormethine anticancer drug on C24, B12N12 and B12C6N6 nanocages. Comput. Theor. Chem. 1197, 113156 (2021)

    Article  Google Scholar 

  54. Rahman, H., Hossain, Md.R., Ferdous, T.: The recent advancement of low-dimensional nanostructured materials for drug delivery and drug sensing application: A brief review. J. Mol. Liq. 320, 114427 (2020)

    Article  CAS  Google Scholar 

  55. Mahmood, J., Lee, E.K., Jung, M., et al.: Nitrogenated holey two-dimensional structures. Nat. Comm. 6, 6486 (2015)

    Article  CAS  Google Scholar 

  56. Mortazavi, B., Makaremi, M., Shahrokhi, M., et al.: N-graphdiyne two-dimensional nanomaterials: Semiconductors with low thermal conductivity and high stretchability. Carbon 137, 57–67 (2018)

    Article  CAS  Google Scholar 

  57. Di, J., Yan, C., Handoko, A.D., et al.: Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Mater. Today. 21, 749–770 (2018)

    Article  CAS  Google Scholar 

  58. Rahman, M.Z., Davey, K., Mullins, C.B.: Tuning the intrinsic properties of carbon nitride for high quantum yield photocatalytic hydrogen production. Adv. Sci. 5, 1800820 (2018)

    Article  Google Scholar 

  59. Ashwin Kishore, M.R., Sjåstad, A.O., Ravindran, P.: Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: A first-principles study. Carbon 141, 50–58 (2019)

    Article  CAS  Google Scholar 

  60. Xu, J., Mahmood, J., Dou, Y., Dou, S., Li, F., Dai, L., Baek, J.-B.: 2D frameworks of C2N and C3N as new anode materials for lithium-ion batteries. Adv. Mater. 29, 1702007 (2017)

    Article  Google Scholar 

  61. Zheng, Y., Li, H., Yuan, H., et al.: Understanding the anchoring effect of Graphene, BN, C2N and C3N4 monolayers for lithium-polysulfides in Li-S batteries. Appl. Surf. Sci. 434, 596–603 (2018)

    Article  CAS  Google Scholar 

  62. Hashmi, A., Farooq, M.U., Khan, I., et al.: Ultra-high capacity hydrogen storage in a Li decorated two-dimensional C2N layer. J. Mater. Chem. A. 5, 2821–2828 (2017)

    Article  CAS  Google Scholar 

  63. Qin, G., Cui, Q., Yun, B., et al.: High capacity and reversible hydrogen storage on two dimensional C2N monolayer membrane Int. J. Hydrog. Energy. 43, 9895–9901

  64. Guerrero-Avilés, R., Orellana, W.: Hydrogen storage on cation-decorated biphenylene carbon and nitrogenated holey graphene. Int. J. Hydrog. Energ. 43, 22966–22975 (2018)

    Article  Google Scholar 

  65. Deng, S., Hu, H., Zhuang, G., et al.: A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Appl. Surf. Sci. 441, 408–414 (2018)

    Article  CAS  Google Scholar 

  66. Bhattacharyya, K., Pratik, S.M., Datta, A.: Controlled pore sizes in monolayer C2N act as ultrasensitive probes for detection of gaseous pollutants (HF, HCN, and H2S). J. Phys. Chem. C. 122, 2248–2258 (2018)

    Article  CAS  Google Scholar 

  67. Su, Y., Ao, Z., Ji, Y., et al.: Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Al-doped C2N monolayer: A DFT investigation. Appl. Surf. Sci. 450, 484–491 (2018)

    Article  CAS  Google Scholar 

  68. Liu, L., Zhang, S., Zhao, L., et al.: Superior Compatibility of C(2) N with Human Red Blood Cell Membranes and the Underlying Mechanism. Small. 14, (2018).

  69. Liu, R., Zhai, H., Meng, Y., et al.: Adsorption Behaviors of Typical Proteins on BP, GR, and C2N Surfaces. J. Chem. Inf. Model. 61, 1300–1306 (2021)

    Article  CAS  Google Scholar 

  70. Frisch, M., Trucks, G.W., Schlegel, H.B., et al.: gaussian 09, Revision d. 01, Gaussian. Inc., Wallingford CT. 201, (2009)

  71. Dash, B.: Carbon dioxide capture using covalent organic frameworks (COFs) type material-a theoretical investigation. J. Mol. Model. 24, 1–8 (2018)

    Article  CAS  Google Scholar 

  72. Najafi, M., Morsali, A., Bozorgmehr, M.R.: DFT study of SiO 2 nanoparticles as a drug delivery system: structural and mechanistic aspects. Struct. Chem. 30, 715–726 (2019)

    Article  CAS  Google Scholar 

  73. Wang, Y., Verma, P., Jin, X., et al.: Revised M06 density functional for main-group and transition-metal chemistry. Proc. Natl. Acad. Sci. 115, 10257–10262 (2018)

    Article  CAS  Google Scholar 

  74. Dennington, R., Keith, T., Millam, J.G.: Version 5. Semichem Inc., Shawnee Mission (2009)

    Google Scholar 

  75. Turney, J.M., Simmonett, A.C., Parrish, R.M., et al,: Psi4: an open-source ab initio electronic structure program. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 556–565 (2012).

  76. Lu, T., Chen, F.: Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)

    Article  Google Scholar 

  77. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  78. Abraham, M.J., Murtola, T., Schulz, R., et al.: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1–2, 19–25 (2015)

    Article  Google Scholar 

  79. Lindorff-Larsen, K., Trbovic, N., Maragakis, P., et al.: Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J. Am. Chem. Soc. 134, 3787–3791 (2012)

    Article  CAS  Google Scholar 

  80. Sousa da Silva, A.W., Vranken, W.F.: ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res. Notes. 5, 367 (2012).

  81. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008)

    Article  CAS  Google Scholar 

  82. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  83. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  84. Pilmé, J., Renault, E., Bassal, F., et al.: QTAIM analysis in the context of quasirelativistic quantum calculations. J. Chem. Theory Comput. 10, 4830–4841 (2014)

    Article  Google Scholar 

  85. Rahbar, M., Morsali, A., Bozorgmehr, M.R., Beyramabadi, S.A.: Quantum chemical studies of chitosan nanoparticles as effective drug delivery systems for 5-fluorouracil anticancer drug. J. Mol. Liq. 302, 112495 (2020)

    Article  CAS  Google Scholar 

  86. Shakerzadeh, E.: Efficient carriers for anticancer 5-fluorouracil drug based on the bare and M−encapsulated (M = Na and Ca) B40 fullerenes; in silico investigation. J. Mol. Liq. 343, 116970 (2021)

    Article  CAS  Google Scholar 

  87. Tabtimsai, C., Wanno, B.: Theoretical investigation on 5–fluorouracil anti–cancer drug adsorption on Sc– and Ti–doped armchair and zigzag boron nitride nanotubes. J. Mol. Liq. 337, 116596 (2021)

    Article  CAS  Google Scholar 

  88. Rahimi, R., Solimannejad, M.: BC3 graphene-like monolayer as a drug delivery system for nitrosourea anticancer drug: A first-principles perception. Appl. Surf. Sci. 525, 146577 (2020)

    Article  CAS  Google Scholar 

  89. Zhang, L., Ye, Y.L., Li, X.H., et al.: On the potential of all-boron fullerene B40 as a carrier for anti-cancer drug nitrosourea. J. Mol. Liq. 342, 117533 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khurshid Ayub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 384 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, F., Yar, M., Gulzar, A. et al. Therapeutic potential of C2N as targeted drug delivery system for fluorouracil and nitrosourea to treat cancer: a theoretical study. J Nanostruct Chem 13, 89–102 (2023). https://doi.org/10.1007/s40097-022-00474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00474-5

Keywords

Navigation