Skip to main content

Advertisement

Log in

The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Nanotechnology is a rapidly growing area of research in part due to its integration into many biomedical applications. Within nanotechnology, gold and silver nanostructures are some of the most heavily utilized nanomaterial due to their unique optical, photothermal, and facile surface chemical properties. In this review, common colloid synthesis methods and biofunctionalization strategies of gold and silver nanostructures are highlighted. Their unique properties are also discussed in terms of their use in biodiagnostic, imaging, therapeutic, and drug delivery applications. Furthermore, relevant clinical applications utilizing gold and silver nanostructures are also presented. We also provide a table with reviews covering related topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ali MRK, Snyder B, El-Sayed MA (2012) Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28(25):9807–9815. doi:10.1021/la301387p

    CAS  PubMed  Google Scholar 

  • Alivisatos AP, Johnsson KP, Peng XG et al (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382(6592):609–611. doi:10.1038/382609a0

    CAS  PubMed  Google Scholar 

  • Amoozgar Z, Yeo Y (2012) Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(2):219–233. doi:10.1002/wnan.1157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41(7):2943–2970. doi:10.1039/c2cs15355f

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aslan K, Lakowicz JR, Geddes CD (2004) Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem 330(1):145–155. doi:10.1016/j.ab.2004.03.032

    CAS  PubMed  Google Scholar 

  • Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62

    CAS  PubMed  Google Scholar 

  • Aslan K, Huang J, Wilson GM, Geddes CD (2006) Metal-enhanced fluorescence-based RNA sensing. J Am Chem Soc 128(13):4206–4207. doi:10.1021/ja0601179

    CAS  PubMed  Google Scholar 

  • Atkinson R, Zhang M, Diagaradjane P et al (2010) Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Trans Med 2(55). 10.1126/scitranslmed.3001447

  • Austin LA, Kang B, Yen C-W, El-Sayed MA (2011a) Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjugate Chem 22(11):2324–2331. doi:10.1021/bc200386m

    CAS  Google Scholar 

  • Austin LA, Kang B, Yen C-W, El-Sayed MA (2011b) Plasmonic imaging of human oral cancer cell communities during programmed cell death by nuclear-targeting silver nanoparticles. J Am Chem Soc 133(44):17594–17597. doi:10.1021/ja207807t

    CAS  PubMed  Google Scholar 

  • Austin LA, Kang B, El-Sayed MA (2013) A new nanotechnology technique for determining drug efficacy using targeted plasmonically enhanced single cell imaging spectroscopy. J Am Chem Soc 135(12):4688–4691. doi:10.1021/ja4011145

    CAS  PubMed  Google Scholar 

  • Bae WK, Lee YK, Cho MS et al (2006) A case of hemolytic uremic syndrome caused by Escherichia coli O104:H4. Yonsei Med J 47(3):437–439

    PubMed Central  PubMed  Google Scholar 

  • Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R (2009) Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjugate Chem 20(8):1497–1502. doi:10.1021/bc900215b

    CAS  Google Scholar 

  • Baron R, Zayats M, Willner I (2005) Dopamine-, l-DOPA-, adrenaline-, and noradrenaline-induced growth of au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77(6):1566–1571. doi:10.1021/ac048691v

    CAS  PubMed  Google Scholar 

  • Bert HPW, Olaf A, Annette D, Geetha S, Thoralf K, Roland F, Hanno R (2002) Crit Rev Oncol/Hematol 43:33–56

  • Bharill S, Chen C, Stevens B et al (2010) Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation. ACS Nano 5(1):399–407. doi:10.1021/nn101839t

    PubMed Central  PubMed  Google Scholar 

  • Bhowmick S, Saini S, Shenoy VB, Bagchi B (2006) Resonance energy transfer from a fluorescent dye to a metal nanoparticle. J Chem Phys 125(18):181102

    PubMed  Google Scholar 

  • Biagini RE, Sammons DL, Smith JP et al (2006) Rapid, sensitive, and specific lateral-flow immunochromatographic device to measure anti-anthrax protective antigen immunoglobulin G in serum and whole blood. Clin Vaccine Immunol 13(5):541–546. doi:10.1128/cvi.13.5.541-546.2006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782. doi:10.1039/b806051g

    CAS  PubMed  Google Scholar 

  • Boudreau E, Josleyn M, Ullman D et al (2012) A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine 30(11):1951–1958. doi:10.1016/j.vaccine.2012.01.024

    CAS  PubMed  Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802. 10.1039/c39940000801

  • Caro C, Castillo PM, Klippstein R, Pozo D, Zaderenko AP (2010) Silver nanoparticles: sensing and imaging applications. Silver nanoparticles: AP

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588. doi:10.1016/j.tibtech.2010.07.006

    CAS  PubMed  Google Scholar 

  • Chen J, Saeki F, Wiley BJ et al (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477. doi:10.1021/nl047950t

    CAS  PubMed  Google Scholar 

  • Chen J, McLellan JM, Siekkinen A, Xiong Y, Li Z-Y, Xia Y (2006) Facile synthesis of gold–silver nanocages with controllable pores on the surface. J Am Chem Soc 128(46):14776–14777. doi:10.1021/ja066023g

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Wang D, Xi J et al (2007a) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322. doi:10.1021/nl070345g

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YH, Tsai CY, Huang PY et al (2007b) Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm 4(5):713–722. doi:10.1021/Mp060132k

    CAS  PubMed  Google Scholar 

  • Chen G, Song F, Xiong X, Peng X (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). Ind Eng Chem Res 52(33):11228–11245. doi:10.1021/ie303485n

    CAS  Google Scholar 

  • Choi Y, Choi J-H, Liu L, Oh B-K, Park S (2013) Optical sensitivity comparison of multiblock gold-silver nanorods toward biomolecule detection: quadrupole surface plasmonic detection of dopamine. Chem Mater 25(6):919–926. doi:10.1021/cm304030r

    CAS  Google Scholar 

  • Dai Q, Liu X, Coutts J, Austin L, Huo Q (2008) A one-step highly sensitive method for DNA detection using dynamic light scattering. J Am Chem Soc 130(26):8138–8139. doi:10.1021/ja801947e

    CAS  PubMed  Google Scholar 

  • Diaz-Vazquez C, Torregrosa-Bertet MJ, Carvajal-Urueña I et al (2009) Accuracy of ImmunoCAP® Rapid in the diagnosis of allergic sensitization in children between 1 and 14 years with recurrent wheezing: the IReNE study. Pediatr Allergy Immunol 20(6):601–609. doi:10.1111/j.1399-3038.2008.00827.x

    PubMed  Google Scholar 

  • Dickerson EB, Dreaden EC, Huang X et al (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66. doi:10.1016/j.canlet.2008.04.026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong XW, Mumper RJ (2010) Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine 5(4):597–615. doi:10.2217/Nnm.10.35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dreaden EC, El-Sayed MA (2012) Detecting and destroying cancer cells in more than one way with noble metals and different confinement properties on the nanoscale. Acc Chem Res 45(11):1854–1865

    CAS  PubMed  Google Scholar 

  • Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA (2009) Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjugate Chem 20(12):2247–2253. doi:10.1021/Bc9002212

    CAS  Google Scholar 

  • Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404

    CAS  PubMed  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012a) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    CAS  PubMed  Google Scholar 

  • Dreaden EC, Gryder BE, Austin LA et al (2012b) Antiandrogen gold nanoparticles dual-target and overcome treatment resistance in hormone-insensitive prostate cancer cells. Bioconjugate Chem 23(8):1507–1512. doi:10.1021/Bc300158k

    CAS  Google Scholar 

  • Du BA, Li ZP, Cheng YQ (2008) Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection. Talanta 75(4):959–964. doi:10.1016/j.talanta.2007.12.048

    CAS  PubMed  Google Scholar 

  • Dubois LH, Nuzzo RG (1992) Synthesis, structure, and properties of model organic surfaces. Annu Rev Phys Chem 43(1):437–463. doi:10.1146/annurev.pc.43.100192.002253

    CAS  Google Scholar 

  • Dulkeith E, Ringler M, Klar TA, Feldmann J, Muoz Javier A, Parak WJ (2005) Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett 5(4):585–589. doi:10.1021/nl0480969

    CAS  PubMed  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3(6):1–10

    Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081. doi:10.1126/science.277.5329.1078

    CAS  PubMed  Google Scholar 

  • El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    CAS  PubMed  Google Scholar 

  • El-Sayed IH, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834. doi:10.1021/nl050074e

    CAS  PubMed  Google Scholar 

  • Englebienne P (1998) Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123(7):1599–1603. doi:10.1039/a804010i

    CAS  PubMed  Google Scholar 

  • Fang Y (1998) Optical absorption of nanoscale colloidal silver: aggregate band and adsorbate-silver surface band. J Chem Phys 108(10):4315–4318. doi:10.1063/1.475831

    CAS  Google Scholar 

  • Faraday M (1857) The Bakerian lecture: experimental relations of gold (and Other Metals) to light. Philos Trans R Soc London 147:145–181. doi:10.1098/rstl.1857.0011

    Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6(1):103–109. doi:10.1016/j.nano.2009.04.006

    CAS  Google Scholar 

  • Fischler M, Sologubenko A, Mayer J et al (2008) Chain-like assembly of gold nanoparticles on artificial DNA templates via ‘click chemistry’. Chem Commun 2:169–171. 10.1039/b715602b

  • Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA et al (2010) Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res 29(1):148

    PubMed Central  PubMed  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22. doi:10.1038/physci241020a0

    CAS  Google Scholar 

  • Gaikwad S, Ingle A, Gade A et al (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–4314. doi:10.2147/ijn.s50070

    Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16(10):8894–8918

    CAS  PubMed  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Delivery Rev 60(11):1307–1315. doi:10.1016/j.addr.2008.03.016

    CAS  Google Scholar 

  • Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V (2003) Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem 75(16):4155–4160. doi:10.1021/ac034256+

    CAS  PubMed  Google Scholar 

  • Golden J, Josleyn M, Mucker E et al (2012) Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates. PLoS ONE 7(7). doi:10.1371/journal.pone.0042353

  • Govender R, Phulukdaree A, Gengan RM, Anand K, Chuturgoon AA (2012) Silver nanoparticles of Albizia Adianthifolia: the induction of apoptosis in a human lung carcinoma cell line. J Nanobiotechnol 11(5):1–9. doi:10.1186/1477-3155-11-5

    Google Scholar 

  • Graf A-H, Cheung AL, Hauser-Kronberger C et al (2000) Clinical relevance of HPV 16/18 testing methods in cervical squamous cell carcinoma. Appl Immunohistochem Mol Morphol 8(4):300–309

    CAS  PubMed  Google Scholar 

  • Griffin J, Singh AK, Senapati D et al (2009) Size- and distance-dependent nanoparticle surface-energy transfer (NSET) Method for selective sensing of hepatitis C virus RNA. Chem Eur J 15(2):342–351. doi:10.1002/chem.200801812

    CAS  PubMed  Google Scholar 

  • Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75(21):5936–5943. doi:10.1021/ac034356f

    CAS  PubMed  Google Scholar 

  • Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791. doi:10.1039/b711490g

    CAS  PubMed  Google Scholar 

  • Guo ST, Huang YY, Jiang QA et al (2010) Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9):5505–5511. doi:10.1021/Nn101638u

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30(31):6341–6350

    CAS  PubMed  Google Scholar 

  • Haes AJ, Hall WP, Chang L, Klein WL, Van Duyne RP (2004a) A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer’s disease. Nano Lett 4(6):1029–1034. doi:10.1021/nl049670j

    CAS  Google Scholar 

  • Haes AJ, Zou S, Schatz GC, Van Duyne RP (2004b) Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B 108(22):6961–6968. doi:10.1021/jp036261n

    CAS  Google Scholar 

  • Hayden SC, Austin LA, Near RD, Ozturk R, El-Sayed MA (2013) Plasmonic enhancement of photodynamic cancer therapy. J Photochem Photobiol, A 269:34–41

    CAS  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554. doi:10.1073/pnas.2232479100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong R, Han G, Fernandez JM, Kim BJ, Forbes NS, Rotello VM (2006) Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. J Am Chem Soc 128(4):1078–1079. doi:10.1021/Ja056726

    CAS  PubMed  Google Scholar 

  • Höppener C, Novotny L (2012) Exploiting the light–metal interaction for biomolecular sensing and imaging. Quart Rev Biophys 45(02):209–255. doi:10.1017/S0033583512000042

    Google Scholar 

  • Hsin-Neng W, Tuan V-D (2009) Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes. Nanotechnology 20(6):065101

    Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006a) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120. doi:10.1021/ja057254a

    CAS  PubMed  Google Scholar 

  • Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2006b) Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol 82(2):412–417. doi:10.1562/2005-12-14-ra-754

    CAS  PubMed  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2007) Cancer Cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker. Nano Lett 7(6):1591–1597. doi:10.1021/nl070472c

    CAS  PubMed  Google Scholar 

  • Huang XH, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228. doi:10.1007/s10103-007-0470-x

    PubMed  Google Scholar 

  • Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910. doi:10.1002/adma.200802789

    CAS  Google Scholar 

  • Huang C-F, Monie A, Weng W-H, Wu T (2010) DNA vaccines for cervical cancer. Am J Trans Res 2(1):75–87

    CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818. doi:10.1016/j.drudis.2006.07.005

    CAS  PubMed  Google Scholar 

  • Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110(37):18243–18253. doi:10.1021/jp063879z

    CAS  PubMed  Google Scholar 

  • Jain PK, Huang X, El-Sayed IH, El-Sayad MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118. doi:10.1007/s11468-007-9031-1

    CAS  Google Scholar 

  • Jain PK, Huang XH, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. doi:10.1021/ar7002804

    CAS  PubMed  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001a) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393. doi:10.1002/1521-4095(200109)13:18<1389:aid-adma1389>3.0.co;2-f

    CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001b) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105(19):4065–4067. doi:10.1021/jp0107964

    CAS  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001c) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618. 10.1039/b100521i

  • Jans H, Liu X, Austin L, Maes G, Huo Q (2009) Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 81(22):9425–9432. doi:10.1021/ac901822w

    CAS  PubMed  Google Scholar 

  • Jennings TL, Singh MP, Strouse GF (2006) Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles:Äâ probing NSET validity. J Am Chem Soc 128(16):5462–5467. doi:10.1021/ja0583665

    CAS  PubMed  Google Scholar 

  • Jeong E, Jung G, Hong C, Lee H (2014) Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharmacal Res 37(1):53–59. doi:10.1007/s12272-013-0273-5

    CAS  Google Scholar 

  • Jeyaraj M, Sathishkumar G, Sivanandhan G et al (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B 106:86–92

    CAS  Google Scholar 

  • Johansson S (2004) ImmunoCAP® specific IgE test: an objective tool for research and routine allergy diagnosis. Expert Rev Molec Diagn 4(3):273–279

    CAS  Google Scholar 

  • Jokerst JV, Cole AJ, Van de Sompel D, Gambhir SS (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6(11):10366–10377. doi:10.1021/nn304347g

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ju H, Zhang X, Wang J (2011) Biofunctionalization of nanomaterials nanobiosensing. Biological and medical physics, biomedical engineering. Springer, New York, pp 1–38

  • Jue T (ed) (2010) Biomedical applications of biophysics. Springer, New York

  • Kang B, Mackey MA, El-Sayed MA (2010a) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132(5):1517–1519. doi:10.1021/ja9102698

    CAS  PubMed  Google Scholar 

  • Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010b) Patterned multiplex pathogen DNA detection by au particle-on-wire SERS sensor. Nano Lett 10(4):1189–1193. doi:10.1021/nl1000086

    CAS  PubMed  Google Scholar 

  • Kang B, Austin LA, El-Sayed MA (2012) Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced rayleigh/raman spectroscopy. Nano Lett 12(10):5369–5375. doi:10.1021/nl3027586

    CAS  PubMed  Google Scholar 

  • Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci 105(15):5844–5849. doi:10.1073/pnas.0710575105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim CK, Ghosh P, Pagliuca C, Zhu Z-J, Menichetti S, Rotello VM (2009) Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc 131(4):1360–1361. doi:10.1021/ja808137c

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kneipp K, Kneipp H, Kartha VB et al (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E Stat Nonlinear Soft Matter Phys 57(6):R6281–R6284. doi:10.1103/PhysRevE.57.R6281

    CAS  Google Scholar 

  • Kneipp K, Haka AS, Kneipp H et al (2002) Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl Spectrosc 56(2):150–154. doi:10.1366/0003702021954557

    CAS  Google Scholar 

  • Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6(10):2225–2231. doi:10.1021/nl061517x

    CAS  PubMed  Google Scholar 

  • Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med 6(2):214–226. doi:10.1016/j.nano.2009.07.009

    CAS  Google Scholar 

  • Kumar A, Zhang X, Liang XJ (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31(5):593–606. doi:10.1016/j.biotechadv.2012.10.002

    CAS  PubMed  Google Scholar 

  • Kwan KH, Liu X, To MK, Yeung KW, Ho C-m, Wong KK (2011) Modulation of collagen alignment by silver nanoparticles results in better mechanical properties in wound healing. Nanomed Nanotechnol Biol Med 7(4):497–504

  • Laderman EI, Whitworth E, Dumaual E et al (2008) Rapid, sensitive, and specific lateral-flow immunochromatographic point-of-care device for detection of herpes simplex virus type 2-specific immunoglobulin G antibodies in serum and whole blood. Clin Vaccine Immunol 15(1):159–163. doi:10.1128/cvi.00218-07

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lakowicz J (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1(1):5–33. doi:10.1007/s11468-005-9002-3

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lara H, Ixtepan-Turrent L, Garza-Trevino E, Rodriguez-Padilla C (2010a) PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol 8(1):15

    Google Scholar 

  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010b) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1):1–8

    Google Scholar 

  • Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225. doi:10.1021/jp062536y

    CAS  PubMed  Google Scholar 

  • Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2 +) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46(22):4093–4096. doi:10.1002/anie.200700269

    CAS  Google Scholar 

  • Lee SE, Liu GL, Kim F, Lee LP (2009) Remote optical switch for localized and selective control of gene interference. Nano Lett 9(2):562–570. doi:10.1021/Nl802689k

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee S, Chon H, Lee J et al (2014) Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron 51:238–243. doi:10.1016/j.bios.2013.07.063

    CAS  PubMed  Google Scholar 

  • Lefferts J, Jannetto P, Tsongalis G (2009) Evaluation of the nanosphere verigene system and the verigene F5/F2/MTHFR nucleic acid tests. Exp Mol Pathol 87(2):105–108. doi:10.1016/j.yexmp.2009.06.002

    CAS  PubMed  Google Scholar 

  • Li Q, Liu L, Chen W, Peng C, Wang L, Xu C (2009) Gold nanoparticle-based immunochromatographic assay for the detection of 7-aminoclonazepam in urine. Int J Environ Anal Chem 89(4):261–268. doi:10.1080/03067310802538493

    CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122. doi:10.1007/s00253-009-2159-5

    CAS  PubMed  Google Scholar 

  • Li Y, Jing C, Zhang L, Long Y-T (2012) Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem Soc Rev 41(2):632–642. doi:10.1039/c1cs15143f

    CAS  PubMed  Google Scholar 

  • Libutti SK, Paciotti GF, Myer L et al (2009) Results of a completed phase I clinical trial of CYT-6091: a pegylated colloidal gold-TNF nanomedicine. J Clin Oncol 27(15):3586

    Google Scholar 

  • Libutti SK, Paciotti GF, Byrnes AA et al (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16(24):6139–6149. doi:10.1158/1078-0432.ccr-10-0978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindhardt C, Schönenbrücher H, Slaghuis J, Bubert A, Ossmer R (2009) Singlepath salmonella. Performance tested method 060401. J AOAC Int 92(6):1885–1889

    CAS  PubMed  Google Scholar 

  • Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217. doi:10.1021/jp984796o

    CAS  Google Scholar 

  • Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366. doi:10.1146/annurev.physchem.54.011002.103759

    CAS  PubMed  Google Scholar 

  • Liu Y, Huang CZ (2013) Screening sensitive nanosensors via the investigation of shape-dependent localized surface plasmon resonance of single Ag nanoparticles. Nanoscale 5(16):7458–7466. doi:10.1039/c3nr01952g

    CAS  PubMed  Google Scholar 

  • Liu X, Dai Q, Austin L et al (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130(9):2780–2782. doi:10.1021/ja711298b

    CAS  PubMed  Google Scholar 

  • Liu X, Py Lee, Cm Ho et al (2010a) Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem 5(3):468–475

    CAS  PubMed  Google Scholar 

  • Liu Z, Kiessling F, Gatjens J (2010b) Advanced nanomaterials in multimodal imaging: design, functionalization, and biomedical applications. J Nanomater. doi:10.1155/2010/894303

    Google Scholar 

  • Lu L, Sun RWY, Chen R et al (2008) Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Ther 13(2):253–262

    CAS  Google Scholar 

  • Lu W, Xiong C, Zhang G et al (2009a) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15(3):876–886. doi:10.1158/1078-0432.CCR-08-1480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009b) Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 60(1):167–192. doi:10.1146/annurev.physchem.040808.090434

    CAS  PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270. doi:10.1073/pnas.0805135105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mackey MA, Saira F, Mahmoud MA, El-Sayed MA (2013) Inducing cancer cell death by targeting its nucleus: solid gold nanospheres versus hollow gold nanocages. Bioconjugate Chem 24(6):897–906. doi:10.1021/bc300592d

    CAS  Google Scholar 

  • Mackey MA, Ali MR, Austin LA, Near RD, El-Sayed MA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118(5):1319–1326. doi:10.1021/jp409298f

    CAS  PubMed  Google Scholar 

  • Mahmoud MA, El-Sayed MA (2012) Metallic double shell hollow nanocages: the challenges of their synthetic techniques. Langmuir 28(9):4051–4059. doi:10.1021/la203982h

    CAS  PubMed  Google Scholar 

  • Mahmoud MA, El-Sayed MA (2013) Different plasmon sensing behavior of silver and gold nanorods. J Phys Chem Lett 4(9):1541–1545. doi:10.1021/jz4005015

    CAS  Google Scholar 

  • Mahmoud MA, El-Sayed MA, Gao J, Landman U (2013) High-frequency mechanical stirring initiates anisotropic growth of seeds requisite for synthesis of asymmetric metallic nanoparticles like silver nanorods. Nano Lett 13(10):4739–4745. doi:10.1021/nl402305n

    CAS  PubMed  Google Scholar 

  • Maiti KK, Samanta A, Vendrell M, Soh KS, Olivo M, Chang YT (2011) Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem Commun 47(12):3514–3516. doi:10.1039/c0cc05265e

    CAS  Google Scholar 

  • Maiti KK, Dinish US, Samanta A et al (2012) Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7(2):85–93. doi:10.1016/j.nantod.2012.02.008

    CAS  Google Scholar 

  • Mandecki W, Bharill S, Borejdo J et al (2008) Fluorescence enhancement on silver nanostructures: studies of components of ribosomal translation in vitro—art. no. 68620T. In: Enderlein J, Gryczynski ZK, Erdmann R (eds) Single molecule spectroscopy and imaging. Proc Soc Photo Opt Instrum Eng 6862: T8620–T8620

  • Mao X, Ma YQ, Zhang AG, Zhang LR, Zeng LW, Liu GD (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81(4):1660–1668. doi:10.1021/ac8024653

    CAS  PubMed  Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12(5):1531–1551. doi:10.1007/s11051-010-9900-y

    CAS  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182. doi:10.1039/b820557b

    CAS  PubMed  Google Scholar 

  • McIntosh CM, Esposito EA, Boal AK, Simard JM, Martin CT, Rotello VM (2001) Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J Am Chem Soc 123(31):7626–7629. doi:10.1021/ja015556g

    CAS  PubMed  Google Scholar 

  • Melancon MP, Lu W, Yang Z et al (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739. doi:10.1158/1535-7163.MCT-08-0016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609. doi:10.1038/382607a0

    CAS  PubMed  Google Scholar 

  • Mohs A, Mancini M, Singhal S et al (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82(21):9058–9065. doi:10.1021/ac102058k

    CAS  PubMed  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    CAS  PubMed  Google Scholar 

  • Mout R, Moyano DF, Rana S, Rotello VM (2012) Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 41(7):2539–2544

    CAS  PubMed  Google Scholar 

  • Murphy CJ, Gole AM, Hunyadi SE et al (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557. doi:10.1039/b711069c

  • Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed 2(2):129

    CAS  Google Scholar 

  • Nath N, Chilkoti A (2001) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74(3):504–509. doi:10.1021/ac015657x

    Google Scholar 

  • Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106. doi:10.1126/science.275.5303.1102

    CAS  PubMed  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962. doi:10.1021/cm020732l

    CAS  Google Scholar 

  • Nolsoe CP, Torp-Pedersen S, Burcharth F et al (1993) Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology 187(2):333–337. doi:10.1148/radiology.187.2.8475269

    CAS  PubMed  Google Scholar 

  • Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC (2013) Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev Med Virol 23(4):221–240. doi:10.1002/rmv.1739

    CAS  PubMed  Google Scholar 

  • Oishi M, Nakaogami J, Ishii T, Nagasaki Y (2006) Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem Lett 35(9):1046–1047. doi:10.1246/Cl.2006.1046

    CAS  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176. doi:10.1016/j.canlet.2004.02.004

    PubMed  Google Scholar 

  • Otto A, Futamata M (2006) Electronic mechanisms of SERS. In: Kneipp K, Moskovits M, Kneipp H (eds) Surface-enhanced Raman Scattering: physics and applications. Top Appl Phys103:147–182

  • Oyelere AK, Chen PC, Huang X, El-Sayed IH, El-Sayed MA (2007) Peptide-conjugated gold nanorods for nuclear targeting. Bioconjugate Chem 18(5):1490–1497. doi:10.1021/bc070132i

    CAS  Google Scholar 

  • Paciotti GF, Myer LD, Kim TH et al (2001) Colloidal gold: a novel colloidal nanoparticle vector for tumor-directed drug delivery. Clin Cancer Res 7(11):3673S–3674S

    Google Scholar 

  • Paciotti GF, Myer L, Weinreich D et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183. doi:10.1080/10717540490433895

    CAS  PubMed  Google Scholar 

  • Paciotti GF, Kingston DGI, Tamarkin L (2006) Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res 67(1):47–54. doi:10.1002/Ddr.20066

    CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720. doi:10.1128/aem.02218-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park C, Kim H, Hixon D, Bubert A (2003) Evaluation of the Duopath Verotoxin test for detection of Shiga toxins in cultures of human stools. J Clin Microbiol 41(6):2650–2653

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131(47):17042–17043. doi:10.1021/ja907069u

    CAS  PubMed  Google Scholar 

  • Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706(1):8–24. doi:10.1016/j.aca.2011.08.020

    CAS  PubMed  Google Scholar 

  • Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Controlled Release 149(1):65–71. doi:10.1016/j.jconrel.2009.12.006

    CAS  Google Scholar 

  • Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84(6):4023–4032. doi:10.1016/S0006-3495(03)75128-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong SQ (2009) Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials 30(30):6065–6075. doi:10.1016/j.biomaterials.2009.07.048

    CAS  PubMed  Google Scholar 

  • Pustovit VN, Shahbazyan TV (2011) Resonance energy transfer near metal nanostructures mediated by surface plasmons. Phys Rev B Condens Matter Mater Phys 83(8):085427

    Google Scholar 

  • Pyatenko A, Yamaguchi M, Suzuki M (2007) Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J Phys Chem C 111(22):7910–7917. doi:10.1021/jp071080x

    CAS  Google Scholar 

  • Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37(5):912–920. doi:10.1039/b708839f

    CAS  PubMed  Google Scholar 

  • Qian XM, Peng XH, Ansari DO et al (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26(1):83–90. doi:10.1038/nbt1377

    CAS  PubMed  Google Scholar 

  • Quang Huy T, Van Quy N, Anh-Tuan L (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Natl Sci Nanosci Nanotechnol 4(3):033001

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. doi:10.1016/j.biotechadv.2008.09.002

    CAS  PubMed  Google Scholar 

  • Ray PC, Fortner A, Darbha GK (2006) Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J Phys Chem B 110(42):20745–20748. doi:10.1021/jp0651211

    CAS  PubMed  Google Scholar 

  • Ray PC, Darbha GK, Ray A, Walker J, Hardy W (2007) Gold nanoparticle based FRET for DNA detection. Plasmonics 2(4):173–183. doi:10.1007/s11468-007-9036-9

    CAS  Google Scholar 

  • Richmond TD (2008) The current status and future potential of personalized diagnostics: streamlining a customized process. Biotechnol Ann Rev 14:411–422

    Google Scholar 

  • Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H (2010) Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem 118(2):462–466. doi:10.1016/j.foodchem.2009.04.106

    CAS  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030. doi:10.1126/science.1125559

    CAS  PubMed  Google Scholar 

  • Sapsford KE, Algar WR, Berti L et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074. doi:10.1021/cr300143v

    CAS  PubMed  Google Scholar 

  • Schatz GC, Young MA, Van Duyne RP (2006) Electromagnetic mechanism of SERS. Surfac Enhanc Raman Scatt Phys Appl 103:19–45

    CAS  Google Scholar 

  • Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10(9–10):1344–1354. doi:10.1002/cphc.200900119

    PubMed  Google Scholar 

  • Schmidt M, Hübner J, Boisen A (2012) Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv Mater 24(10):8. doi:10.1002/adma.201103496

    Google Scholar 

  • Seferos D, Giljohann D, Hill H, Prigodich A, Mirkin C (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129(50):15477–15479. doi:10.1021/ja0776529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51(3):293–298. doi:10.1002/1097-4636(20000905)51:3<293:Aid-Jbm1>3.0.Co;2-T

    CAS  PubMed  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1–2):83–96. doi:10.1016/j.cis.2008.09.002

    CAS  Google Scholar 

  • Sharma B, Ma K, Glucksberg MR, Van Duyne RP (2013) Seeing through bone with surface-enhanced spatially offset Raman spectroscopy. J Am Chem Soc 135(46):17290–17293. doi:10.1021/ja409378f

    CAS  PubMed  Google Scholar 

  • Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038. doi:10.1021/nl0515753

    CAS  PubMed  Google Scholar 

  • Shiotani A, Akiyama Y, Kawano T et al (2010) Active accumulation of gold nanorods in tumor in response to near-infrared laser irradiation. Bioconjugate Chem 21(11):2049–2054. doi:10.1021/bc100284s

    CAS  Google Scholar 

  • Skrabalak SE, Chen J, Sun Y et al (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595. doi:10.1021/ar800018v

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275(1):177–182. doi:10.1016/j.jcis.2004.02.012

    CAS  Google Scholar 

  • Sperling R, Parak W (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci 368(1915):1333–1383

    CAS  Google Scholar 

  • Sriram MI, Kanth SBM, Kalishwaralal K, Gurunathan S (2010) Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed 5:753

    CAS  Google Scholar 

  • Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964. doi:10.1021/ja972332i

    CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi:10.1126/science.1077229

    CAS  PubMed  Google Scholar 

  • Sun L, Yu C, Irudayaraj J (2007) Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection. Anal Chem 79(11):3981–3988. doi:10.1021/ac070078z

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swathi RS, Sebastian KL (2007) Resonance energy transfer from a fluorescent dye molecule to plasmon and electron-hole excitations of a metal nanoparticle. J Chem Phys 126(23):234701

    CAS  PubMed  Google Scholar 

  • Tao AR, Habas S, Yang PD (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325. doi:10.1002/smll.200701295

    CAS  Google Scholar 

  • Tao H, Liao X, Xu M, Xie X, Zhong F, Yi Z (2014) Detection of immunoglobulin G based on nanoparticle surface energy transfers from fluorescein isothiocyanate to gold nanoparticles. Anal Methods. doi:10.1039/c3ay41957f

    Google Scholar 

  • Tashkhourian J, Hormozi-Nezhad MR, Khodaveisi J, Dashti R (2011) A novel photometric glucose biosensor based on decolorizing of silver nanoparticles. Sens Actuators, B 158(1):185–189. doi:10.1016/j.snb.2011.06.002

    CAS  Google Scholar 

  • Tian J, Wong KK, Ho CM et al (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2(1):129–136

    CAS  PubMed  Google Scholar 

  • Ting BP, Zhang J, Gao ZQ, Ying JY (2009) A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens Bioelectron 25(2):282–287. doi:10.1016/j.bios.2009.07.005

    CAS  PubMed  Google Scholar 

  • Tippkotter N, Stuckmann H, Kroll S et al (2009) A semi-quantitative dipstick assay for microcystin. Anal Bioanal Chem 394(3):863–869. doi:10.1007/s00216-009-2750-8

    PubMed  Google Scholar 

  • Tocco I, Zavan B, Bassetto F, Vindigni V (2012) Nanotechnology-based therapies for skin wound regeneration. J Nanomater. doi:10.1155/2012/714134

    Google Scholar 

  • Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nano Today 3(3):31–37

    CAS  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. doi:10.1039/df9511100055

    Google Scholar 

  • Van de Broek B, Devoogdt N, D’Hollander A et al (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 5(6):4319–4328. doi:10.1021/Nn1023363

    PubMed  Google Scholar 

  • Vigderman L, Zubarev ER (2013) Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv Drug Delivery Rev 65(5):663–676

    CAS  Google Scholar 

  • Vo-Dinh T, Wang H-N, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102. doi:10.1002/jbio.200910015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang C, Irudayaraj J (2008) Gold nanorod probes for the detection of multiple pathogens. Small 4(12):2204–2208. doi:10.1002/smll.200800309

    CAS  PubMed  Google Scholar 

  • Wang F, Wang YC, Dou S, Xiong MH, Sun TM, Wang J (2011a) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5(5):3679–3692. doi:10.1021/Nn200007z

    CAS  PubMed  Google Scholar 

  • Wang J, Byrne JD, Napier ME, DeSimone JM (2011b) More effective nanomedicines through particle design. Small 7(14):1919–1931. doi:10.1002/smll.201100442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Tang L-J, Jiang J-H (2013) Surface-enhanced raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles. Anal Chem 85(19):9213–9220. doi:10.1021/ac4019439

    CAS  PubMed  Google Scholar 

  • Wei H, Chen CG, Han BY, Wang EK (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80(18):7051–7055. doi:10.1021/ac801144t

    CAS  PubMed  Google Scholar 

  • Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19(4):316–317. doi:10.1038/86684

    CAS  PubMed  Google Scholar 

  • Wiethoff CM, Middaugh CR (2003) Barriers to nonviral gene delivery. J Pharm Sci 92(2):203–217. doi:10.1002/Jps.10286

    CAS  PubMed  Google Scholar 

  • Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297. doi:10.1146/annurev.physchem.58.032806.104607

    CAS  PubMed  Google Scholar 

  • Xiang DX, Chen Q, Pang L, Zheng CL (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods 178(1–2):137–142. doi:10.1016/j.jviromet.2011.09.003

    CAS  PubMed  Google Scholar 

  • Xu X, Chen Y, Wei HJ, Xia B, Liu F, Li N (2012) Counting bacteria using functionalized gold nanoparticles as the light-scattering reporter. Anal Chem 84(22):9721–9728. doi:10.1021/ac302471c

    CAS  PubMed  Google Scholar 

  • Yu AK, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77(3):233

    Google Scholar 

  • Yuan Y, Zhang J, Zhang H, Yang X (2012) Silver nanoparticle based label-free colorimetric immunosensor for rapid detection of neurogenin 1. Analyst 137(2):496–501. doi:10.1039/c1an15875a

    CAS  PubMed  Google Scholar 

  • Yun CS, Javier A, Jennings T et al (2005) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127(9):3115–3119. doi:10.1021/ja043940i

    CAS  PubMed  Google Scholar 

  • Zavaleta CL, Smith BR, Walton I et al (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci 106(32):13511–13516. doi:10.1073/pnas.0813327106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu K, Zhang Y, He S et al (2012) Quantification of proteins by functionalized gold nanoparticles using click chemistry. Anal Chem 84(10):4267–4270. doi:10.1021/ac3010567

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MAE and coworkers would like to acknowledge the support from the U.S. National Institutes of Health (1U01CA151802-01). LAA thanks the support from Georgia Institute of Technology/Department of Education’s Graduate Assistance in Areas of National Need (GAANN) Molecular Biophysics and Biotechnology Fellowship. ECD acknowledges postdoctoral fellowship support from the NIH (Ruth L. Kirschstein NRSA 1F32EB017614-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa A. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austin, L.A., Mackey, M.A., Dreaden, E.C. et al. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 88, 1391–1417 (2014). https://doi.org/10.1007/s00204-014-1245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1245-3

Keywords

Navigation