Skip to main content

Advertisement

Log in

Synthesis of hydroxyapatite nanoparticle and role of its size in hydroxyapatite/chitosan–gelatin biocomposite for bone grafting

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

In the research of bone tissue engineering and regeneration, nano-hydroxyapatite (nHAp), chitosan (CS), and gelatin (GeL)-based scaffold shows promising result because of their potentials of tailored properties by manipulating 3D networks. In this work, nHAp was synthesized by wet chemical precipitation method using calcium nitrate tetrahydrate [Ca(NO3)2∙4H2O] and di-ammonium hydrogen phosphate (NH4)2HPO4. Glutaraldehyde was used as the cross-linking agent to prepare 3D networks through a freeze-drying technique. X-ray diffraction (XRD) analysis confirmed the formation of single-phase nHAp. Fourier Transformation Infrared Spectroscopy (FTIR) spectra revealed the presence of hydroxyl (-OH) and phosphate \(\left( {{\text{PO}}_{4}^{3- } } \right)\) groups into the sample which confirmed the formation of hydroxyapatite. Raman Spectroscopy analysis elicited the conservancy of the nHAp and scaffold structure. Scanning Electron Microscopy (SEM) images revealed the formation of a 3D interconnected porous scaffold with a pore size in the range of 30–250 μm. Energy Dispersive X-ray Spectroscopy (EDS) of the scaffold affirmed that the prepared nHAp is calcium abundant nHAp. The cytotoxicity of the above scaffolds was studied by VERO cells, which revealed that the prepared samples were non-cytotoxic. Mechanical testing demonstrated that inclusion of higher nHAp concentration leads to increase the mechanical properties of the scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li, J., Chen, Y., Yin, Y., Yao, F., Yao, K.: Modulation of nano hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials 28(5), 781–790 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.042

    Article  CAS  Google Scholar 

  2. Maji, K., Dasgupta, S., Pramanik, K., Bissoyi, A.: Preparation and characterization of gelatin-chitosan-nano-TCP based scaffold for orthopedic application. Mater. Sci. Eng. C 86(5), 83–94 (2018). https://doi.org/10.1016/j.msec.2018.02.001

    Article  CAS  Google Scholar 

  3. Maji, K., Dasgupta, S., Pramanik, K., Bissoyi, A.: Development of gelatin-chitosan hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J. Biomater. Sci. Polym. Ed. 26(16), 1190–1209 (2015). https://doi.org/10.1080/09205063.2015.1082809

    Article  CAS  Google Scholar 

  4. Lutz-Christian, G., Boccaccini, A.R.: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3(7), 3867–3910 (2010). https://doi.org/10.3390/ma3073867

    Article  CAS  Google Scholar 

  5. Jones, J.R.: New trends in bioactive scaffolds: the importance of nanostructure. J. Eur. Ceram. Soc. 29(7), 1275–1281 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.003

    Article  CAS  Google Scholar 

  6. Amini, A.R., Laurencin, C.T., Nukavarapu, S.P.: Bone tissue engineering: recent advances and challenges. Crit. Rev. Biomed. Eng. 40(5), 363–408 (2012). https://doi.org/10.1615/CritRevBiomedEng.v40.i5.10

    Article  Google Scholar 

  7. Yunos, D.M., Bretcanu, O., Boccaccini, A.R.: Polymer-bioceramic composites for tissue engineering scaffolds. J. Mater. Sci. 43(7), 4433–4442 (2008). https://doi.org/10.1007/s10853-008-2552-y

    Article  CAS  Google Scholar 

  8. Mouriño, V., Cattalini, J.P., Roether, J.A., Dubey, P., Roy, I., et al.: Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin. Drug Deliv. 10(10), 1353–1365 (2013). https://doi.org/10.1517/17425247.2013.808183

    Article  CAS  Google Scholar 

  9. Yeo, M.G., Kim, G.H.: Preparation and characterization of 3D composite scaffolds based on rapid-prototyped PCL/β-TCP struts and electrospun PCL coated with collagen and HA for bone Regeneration. Chem. Mater. 24(5), 903–913 (2011). https://doi.org/10.1021/cm201119q

    Article  CAS  Google Scholar 

  10. Best, S., Porter, A., Thian, E., Huang, J.: Bioceramics: past, present and for the future. J. Eur. Ceram. Soc. 28(7), 1319–1327 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.12.001

    Article  CAS  Google Scholar 

  11. Hoque, M.E., Sakinah, N., Chuan, Y.L., Ansari, M.N.M.: Synthesis and characterization of hydroxyapatite bioceramic. Int. J. Sci. Eng. Technol. 3(5), 458–462 (2014)

    Google Scholar 

  12. Wu, S., Ma, S., Zhang, C., Cao, G., Wu, D., Gao, C., Lakshmanan, S.: Cryogel biocomposite containing chitosan-gelatin/cerium–zinc doped hydroxyapatite for bone tissue engineering. Saudi J. Biol. Sci. 27(10), 2638–2644 (2020)

    Article  CAS  Google Scholar 

  13. Cianferotti, L., Gomes, A., Fabbri, S., Tanini, A., Brandi, M.: The calcium-sensing receptor in bone metabolism: from bench to bedside and back. Osteoporos. Int. 26(6), 2055–2071 (2015). https://doi.org/10.1007/s00198-015-3203-1

    Article  CAS  Google Scholar 

  14. Sowmya, S., Bumgardener, J.D., Chennazhi, K.P., Nair, S.V., Jayakumar, R.: Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Prog. Polym. Sci. 38(11), 1748–1772 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.005

    Article  CAS  Google Scholar 

  15. Yaaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakada, K., et al.: Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J. Biomed. Mater. Res. 55(1), 20–28 (2001). https://doi.org/10.1002/1097-4636(200104)55:1%3c20::AID-JBM30%3e3.0.CO;2-F

    Article  Google Scholar 

  16. Ahmed, O.E.: Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J. Controll. Release 172(3), 1075–1091 (2013). https://doi.org/10.1016/j.jconrel.2013.09.019

    Article  CAS  Google Scholar 

  17. Dan, Y., Liu, O., Liu, Y., Zhang, Y.Y., Li, S., et al.: Development of novel biocomposite scaffold of chitosan-gelatin/nano hydroxyapatite for potential bone tissue engineering applications. Nanoscale Res. Lett. 11(11), 487–493 (2016). https://doi.org/10.1186/s11671-016-1669-1

    Article  CAS  Google Scholar 

  18. Sadat-Shojai, M., Taghi Khorasani, M., Dinpanah-Khoshdargi, E., Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite in diverse structures. Acta Biomater. 9(8), 7591–7621 (2013). https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  Google Scholar 

  19. Bouyer, E., Gitzhofer, F., Boulos, M.I.: Morphological study of hydroxyapatite nanocrystal suspension. J. Mater. Sci. Mater. Med. 11(7), 523–531 (2000). https://doi.org/10.1023/A:1008918110156

    Article  CAS  Google Scholar 

  20. Maji, K., Dasgupta, S.: Comparative study on mechanical strength of macroporous hydroxyapatite-biopolymer based composite scaffold. In: International conference on advances in engineering and technology, 1 Singapore, pp. 474–480 (2014)

  21. Wang, C.K., Ju, C.P., Chem Lin, J.H.: Effect of doped bioactive glass on structure and properties of sintered hydroxyapatite. Mater. Chem. Phys. 53(2), 138–149 (1998). https://doi.org/10.1016/S0254-0584(97)02074-9

    Article  CAS  Google Scholar 

  22. Yin, Y.J., Zhao, F., Song, X.F., Yao, K.D., William, W.L., et al.: Preparation and characterization of hydroxyapatite/chitosan–gelatin network composite. J. Appl. Polym. Sci. 77(13), 2929–2938 (2000). https://doi.org/10.1002/1097-4628(20000923)77:13%3c2929::AID-APP16%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  23. Gardiner, D.J., Graves, P.R., Bowley, H.J.: Practical Raman Spectroscopy. Springer, Berlin, Heidelberg, New York (1989)

    Book  Google Scholar 

  24. Valentyna, V.N., Anatoliy, M.Y., Volodymyr, M.D., Igor, P.V., Yuriy, A.R., et al.: Nature of some features in Raman spectra of hydroxyapatite containing materials. J. Raman Spectrosc. 47(6), 726–730 (2016). https://doi.org/10.1002/jrs.4883

    Article  CAS  Google Scholar 

  25. Xiong, L., Hongping, Z., Yanan, G., Yingbo, W., Xiang, G., et al.: Hexagonal hydroxyapatite formation on TiO2 nanotubes under urea modulation. Cryst. Eng. Comm. 13(11), 3741–3749 (2011). https://doi.org/10.1039/C0CE00971G

    Article  Google Scholar 

  26. Olsztyska-Janus, S., Gasior-Glogowska, M., Szymborska-Malek, K., Komorowska, M., Witkiewicz, W., et al.: Spectroscopic techniques in the study of human tissues and their components. Part II: Raman spectroscopy. Acta Bioeng. Biomech. 14(4), 121–133 (2012). https://doi.org/10.5277/abb120414

    Article  Google Scholar 

  27. Zhang, L.J., Feng, X.S., Liu, H.G., Qian, D.J., Zhang, L., et al.: Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Mater. Lett. 58(5), 719–722 (2004). https://doi.org/10.1016/j.matlet.2003.07.009

    Article  CAS  Google Scholar 

  28. van Apeldoorn, A.A., Aksenov, Y., Stigter, M., Hofland, I., de Bruijn, J.D., et al.: Parallel high-resolution confocal Raman SEM analysis of inorganic and organic bone matrix constituents. J. R. Soc. Interface 2(2), 39–45 (2005). https://doi.org/10.1098/rsif.2004.0018

    Article  CAS  Google Scholar 

  29. Nabakumar, P., Debasish, M., Indranil, B., Tapas, K.M., Parag, B., et al.: Chemical synthesis, characterization, and biocompatibility study of hydroxyapatite/chitosan phosphate nanocomposite for bone tissue engineering applications. Int. J. Biomater. 2009(512417), 1–8 (2009). https://doi.org/10.1155/2009/512417

    Article  CAS  Google Scholar 

  30. Karin, H.M., Michael, M., Alistair, J.P., Alexander, F.R., Catherine, M.S., et al.: The effect of particle agglomeration on the formation of a surface connected compartment induced by hydroxyaptite nanoparticles in human monocyte-derived macrophages. Biomaterials 35(3), 1074–1088 (2014). https://doi.org/10.1016/j.biomaterials.2013.10.041

    Article  CAS  Google Scholar 

  31. Abidi, S.S.A., Murtaza, Q.: Synthesis and characterization of nanohydroxyapatite powder using wet chemical precipitation reaction. J. Mater. Sci. Technol. 30(4), 307–310 (2014). https://doi.org/10.1016/j.jmst.2013.10.011

    Article  CAS  Google Scholar 

  32. Santos, M.H., de Oliveira, M., de Freitas Souza, L.P., Mansur, H.S., Vasconcelos, W.L.: Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater. Res. 7(4), 625–630 (2004). https://doi.org/10.1590/S1516-14392004000400017

    Article  CAS  Google Scholar 

  33. Dorozhkin, S.V., Dorozhkina, E.I., Epple, M.: Precipitation of carbonate apatite from a revised simulated body fluid in the presence of glucose. J. Appl. Biomater. Funct. Mater. 1(1), 200–208 (2003). https://doi.org/10.1177/228080000300100307

    Article  CAS  Google Scholar 

  34. Sultana, N.: Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34802-0

    Book  Google Scholar 

  35. Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523(1–2), 25–45 (2011). https://doi.org/10.1016/j.tca.2011.06.012

    Article  CAS  Google Scholar 

  36. Cai, X., Tong, H., Shen, X.Y., Chen, W.X., Yan, J., et al.: Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater. 5(7), 2693–2703 (2009). https://doi.org/10.1016/j.actbio.2009.03.005

    Article  CAS  Google Scholar 

  37. Pang, Y.X., Bao, X.: Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J. Eur. Ceram. Soc. 23(10), 1697–1704 (2003). https://doi.org/10.1016/S0955-2219(02)00413-2

    Article  CAS  Google Scholar 

  38. Habiba, E., Felfel, R.M., Abd El-Hady, B.M., Reicha, F.M.: Effect of synthesis temperature on the crystallization and growth of in situ prepared nanohydroxyapatite in chitosan matrix. ISRN Biomater. 2014(897468), 1–8 (2014). https://doi.org/10.1155/2014/897468

    Article  CAS  Google Scholar 

  39. Rahman, S., Maria, K.H., Ishtiaque, M.S., Nahar, A., Das, H., Hoque, S.M.: Evaluation of a novel nanocrystalline hydroxyapatite powder and a solid hydroxyapatite/chitosan-gelatin bioceramic for scaffold preparation using as bone substitute material. Turk. J. Chem. 44(4), 884–900 (2020). https://doi.org/10.3906/kim-1912-40

    Article  CAS  Google Scholar 

  40. Chang, M.C., Ko, C.C., Douglas, W.H.: Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials 24(17), 2853–2862 (2003). https://doi.org/10.1016/S0142-9612(03)00115-7

    Article  CAS  Google Scholar 

  41. Maji, K., Dasgupta, S.: Hydroxyapatite-chitosan and gelatin based scaffold for bone tissue engineering. Trans. Indian Ceram. Soc. 73(2), 110–114 (2014). https://doi.org/10.1080/0371750X.2014.922424

    Article  CAS  Google Scholar 

  42. Thariga, S., Subashini, R., Pavithra, S., Meenachi, P., Kumar, P., Balashanmugam, P., Senthil, K.P.: In vitro evaluation of biodegradable nHAP-chitosan-gelatin-based scaffold for tissue engineering application. IET Nanobiotechnol. 13(3), 301–306 (2019). https://doi.org/10.1049/iet-nbt.2018.5204

    Article  Google Scholar 

  43. Azhar, F.F., Olad, A., Salehi, R.: Fabrication and characterization of chitosan-gelatin/nanohydroxyapatite-polyaniline composite with potential application in tissue engineering scaffolds. Des. Monomers Polym. 17(7), 654–667 (2014). https://doi.org/10.1080/15685551.2014.907621

    Article  CAS  Google Scholar 

  44. Tontowi, A.E., Anindyajati, A., Tangkudung, R.: Biocomposite of Hydroxyapatite/Gelatin/PVA for bone graft application. In: IEEEXplore, 1st international conference on bioinformatics, biotechnology, and biomedical engineering (BioMIC), pp. 1–6 (2018). https://doi.org/10.1109/BIOMIC.2018.8610571

  45. Morgan, E.F., Unnikrisnan, G.U., Hussein, A.I.: Bone mechanical properties in healthy and diseased states. Annu. Rev. Biomed. Eng. 20, 119–143 (2018). https://doi.org/10.1146/annurev-bioeng-062117-121139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge gratefully to Material Science Division, Bangladesh Atomic Energy commission, Dhaka for their laboratory support. We also thank Nano and advanced laboratory, Department of Physics and Centre for Advanced Research of Sciences, University of Dhaka, Dhaka, Bangladesh for technical support.

Funding

Authors did not receive any financial support to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazi Hanium Maria.

Ethics declarations

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by the author.

Competing interests and consent for publication

The authors declare no competing interest. Only the authors had the right to publish the results as they were involved in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohonta, S.K., Maria, K.H., Rahman, S. et al. Synthesis of hydroxyapatite nanoparticle and role of its size in hydroxyapatite/chitosan–gelatin biocomposite for bone grafting. Int Nano Lett 11, 381–393 (2021). https://doi.org/10.1007/s40089-021-00347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00347-9

Keywords

Navigation