Zeng, H.L., Gao, C., Yan, D.Y.: Poly(epsilon-caprolactone)-functionalized carbon nanotubes and their biodegradation properties. Adv. Func. Mater. 16(6), 812–818 (2006). https://doi.org/10.1002/adfm.200500607
CAS
Article
Google Scholar
Zhong, J., Song, L., Meng, J., Gao, B., Chu, W.S., Xu, H.Y., Luo, Y., Guo, J.H., Marcelli, A., Xie, S.S., Wu, Z.Y.: Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47(4), 967–973 (2009). https://doi.org/10.1016/j.carbon.2008.11.051
CAS
Article
Google Scholar
Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X., Ma, A.W.K., Bengio, E.A., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.E., Fairchild, S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M.J., Pasquali, M.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339(6116), 182–186 (2013). https://doi.org/10.1126/science.1228061
CAS
Article
Google Scholar
Cao, Q., Han, S.J., Tulevski, G.S., Zhu, Y., Lu, D.D., Haensch, W.: Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 8(3), 180–186 (2013). https://doi.org/10.1038/nnano.2012.257
CAS
Article
Google Scholar
De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
CAS
Article
Google Scholar
Shulaker, M.M., Hills, G., Patil, N., Wei, H., Chen, H.Y., PhilipWong, H.S., Mitra, S.: Carbon nanotube computer. Nature 501(7468), 526 (2013). https://doi.org/10.1038/nature12502
CAS
Article
Google Scholar
Wang, K., Meng, Q.H., Zhang, Y.J., Wei, Z.X., Miao, M.H.: High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25(10), 1494–1498 (2013). https://doi.org/10.1002/adma.201204598
CAS
Article
Google Scholar
Manzetti, S.: Remediation technologies for oil-drilling activities in the Arctic: oil-spill containment and remediation in open water. Environ Technol Rev 3(1), 49–60 (2014). https://doi.org/10.1080/21622515.2014.966156
CAS
Article
Google Scholar
Serp, P., Corrias, M., Kalck, P.: Carbon nanotubes and nanofibers in catalysis. Appl Catal Gen 253(2), 337–358 (2003). https://doi.org/10.1016/s0926-860x(03)00549-0
CAS
Article
Google Scholar
Matsumoto, T., Komatsu, T., Arai, K., Yamazaki, T., Kijima, M., Shimizu, H., Takasawa, Y., Nakamura, J.: Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun. 1, 1 (2004). https://doi.org/10.1039/b400607k
CAS
Article
Google Scholar
Yoo, E., Gao, L., Komatsu, T., Yagai, N., Arai, K., Yamazaki, T., Matsuishi, K., Matsumoto, T., Nakamura, J.: Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts. J. Phys. Chem. B 108(49), 18903–18907 (2004). https://doi.org/10.1021/jp047056q
CAS
Article
Google Scholar
Landi, B.J., Dileo, R.A., Schauerman, C.M., Cress, C.D., Ganter, M.J., Raffaelle, R.P.: Multi-walled carbon nanotube paper anodes for lithium ion batteries. J. Nanosci. Nanotechnol. 9(6), 3406–3410 (2009). https://doi.org/10.1166/jnn.2009.NS09
CAS
Article
Google Scholar
Landi, B.J., Ganter, M.J., Cress, C.D., DiLeo, R.A., Raffaelle, R.P.: Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2(6), 638–654 (2009). https://doi.org/10.1039/b904116h
CAS
Article
Google Scholar
Pol, V.G., Thackeray, M.M.: Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: evaluation as anodes in lithium electrochemical cells. Energy Environ. Sci. 4(5), 1904–1912 (2011). https://doi.org/10.1039/c0ee00256a
CAS
Article
Google Scholar
Dai, L.M., Chang, D.W., Baek, J.B., Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130–1166 (2012). https://doi.org/10.1002/smll.201101594
CAS
Article
Google Scholar
Evanoff, K., Khan, J., Balandin, A.A., Magasinski, A., Ready, W.J., Fuller, T.F., Yushin, G.: Towards ultrathick battery electrodes: aligned carbon nanotube—enabled architecture. Adv. Mater. 24(4), 533 (2012). https://doi.org/10.1002/adma.201103044
CAS
Article
Google Scholar
Tseng, S.H., Tai, N.H., Hsu, W.K., Chen, L.J., Wang, J.H., Chiu, C.C., Lee, C.Y., Chou, L.J., Leou, K.C.: Ignition of carbon nanotubes using a photoflash. Carbon 45(5), 958–964 (2007). https://doi.org/10.1016/j.carbon.2006.12.033
CAS
Article
Google Scholar
Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.L., Lieber, C.M.: Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476), 94–97 (2000). https://doi.org/10.1126/science.289.5476.94
CAS
Article
Google Scholar
van der Veen, M.H., Barbarin, Y., Kashiwagi, Y., Tokei, Z: IEEE: electron mean-free path for CNT in vertical interconnects approaches Cu. In: 2014 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (2014)
van der Veen, M.H., Vereecke, B., Sugiura, M., Kashiwagi, Y., Ke, X.X., Cott, D.J., Vanpaemel, J.K.M., Vereecken, P.M., De Gendt, S., Huyghebaert, C., Tokei, Z: IEEE: electrical and structural characterization of 150 nm CNT contacts with cu damascene top metallization. In: 2012 IEEE International Interconnect Technology Conference (2012)
Gimenez-Lopez, M.D., La Torre, A., Fay, M.W., Brown, P.D., Khlobystov, A.N.: Assembly and magnetic bistability of Mn3O4 nanoparticles encapsulated in hollow carbon nanofibers. Angew. Chem. Int. Ed. 52(7), 2051–2054 (2013). https://doi.org/10.1002/anie.201207855
CAS
Article
Google Scholar
Manzetti, S.: Molecular and crystal assembly inside the carbon nanotube: encapsulation and manufacturing approaches. Adv. Manuf. 1(3), 198–210 (2013). https://doi.org/10.1007/s40436-013-0030-5
Article
Google Scholar
Manzetti, S., Vasilache, D., Francesco, E.: Emerging carbon-based nanosensor devices: structures, functions and applications. Adv. Manuf. 3(1), 63–72 (2015). https://doi.org/10.1007/s40436-015-0100-y
CAS
Article
Google Scholar
Gabriel, J.C.P. (2003) Large scale production of carbon nanotube transistors: a generic platform for chemical sensors. In: Velev, O.D., Bunning, T.J., Xia, Y., Yang, P. (eds.) Unconventional Approaches to Nanostructures with Applications in Electronics, Photonics, Information Storage and Sensing, vol. 776. Materials Research Society Symposium Proceedings, pp. 271–277
Star, A., Bradley, K., Gabriel, J.C.P., Gruner, G.: Nano-electronic sensors: chemical detection using carbon nanotubes. Abstr. Pap. Am. Chem. Soc. 226, U479–U479 (2003)
Google Scholar
Star, A., Gabriel, J.C.P., Bradley, K., Gruner, G.: Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3(4), 459–463 (2003). https://doi.org/10.1021/nl0340172
CAS
Article
Google Scholar
Bradley, K., Davis, A., Gabriel, J.C.P., Gruner, G.: Integration of cell membranes and nanotube transistors. Nano Lett. 5(5), 841–845 (2005). https://doi.org/10.1021/nl050157v
CAS
Article
Google Scholar
Kimmel, D.W., LeBlanc, G., Meschievitz, M.E., Cliffel, D.E.: Electrochemical sensors and biosensors. Anal. Chem. 84(2), 685–707 (2012). https://doi.org/10.1021/ac202878q
CAS
Article
Google Scholar
Esser, B., Schnorr, J.M., Swager, T.M.: Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. Angew Chem Int Ed 51(23), 5752–5756 (2012). https://doi.org/10.1002/anie.201201042
CAS
Article
Google Scholar
Stetter, J.R., Bradley, K., Cumings, J., Gabriel, J.C., Gruner, G., Star, A.: Nano-electronic sensors; practical device designs for sensors. Nanotech 3, 313–316 (2003)
Google Scholar
Star, A., Han, T.R., Joshi, V., Gabriel, J.C.P., Gruner, G.: Nanoelectronic carbon dioxide sensors. Adv. Mater. 16(22), 2049 (2004). https://doi.org/10.1002/adma.200400322
CAS
Article
Google Scholar
Star, A., Joshi, V., Skarupo, S., Thomas, D., Gabriel, J.C.P.: Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 110(42), 21014–21020 (2006). https://doi.org/10.1021/jp064371z
CAS
Article
Google Scholar
Star, A., Tu, E., Niemann, J., Gabriel, J.C.P., Joiner, C.S., Valcke, C.: Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA. 103(4), 921–926 (2006). https://doi.org/10.1073/pnas.0504146103
CAS
Article
Google Scholar
Gabriel, J.C.P.: 2d Random networks of carbon nanotubes. C R Phys. 11(5–6), 362–374 (2010). https://doi.org/10.1016/j.crhy.2010.07.016
CAS
Article
Google Scholar
Snow, E.S., Perkins, F.K., Houser, E.J., Badescu, S.C., Reinecke, T.L.: Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717), 1942–1945 (2005). https://doi.org/10.1126/science.1109128
CAS
Article
Google Scholar
Keefer, E.W., Botterman, B.R., Romero, M.I., Rossi, A.F., Gross, G.W.: Carbon nanotube coating improves neuronal recordings. Nat. Nanotechnol. 3(7), 434–439 (2008). https://doi.org/10.1038/nnano.2008.174
CAS
Article
Google Scholar
Liu, Z., Tabakman, S., Welsher, K., Dai, H.J.: Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2(2), 85–120 (2009). https://doi.org/10.1007/s12274-009-9009-8
CAS
Article
Google Scholar
Bondavalli, P., Legagneux, P., Pribat, D.: Carbon nanotubes based transistors as gas sensors: state of the art and critical review. Sens. Actuators B Chem. 140(1), 304–318 (2009). https://doi.org/10.1016/j.snb.2009.04.025
CAS
Article
Google Scholar
Michelis, F., Bodelot, L., Bonnassieux, Y., Lebental, B.: Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95, 1020–1026 (2015). https://doi.org/10.1016/j.carbon.2015.08.103
CAS
Article
Google Scholar
Manzetti, S., Enrichi, F.: State-of-the-art developments in metal and carbon-based semiconducting nanomaterials: applications and functions in spintronics, nanophotonics, and nanomagnetics. Adv Manuf 5(2), 105–119 (2017). https://doi.org/10.1007/s40436-017-0172-y
CAS
Article
Google Scholar
Zhang, L.H., Jia, Y., Wang, S.S., Li, Z., Ji, C.Y., Wei, J.Q., Zhu, H.W., Wang, K.L., Wu, D.H., Shi, E.Z., Fang, Y., Cao, A.Y.: Carbon nanotube and CdSe nanobelt schottky junction solar cells. Nano Lett. 10(9), 3583–3589 (2010). https://doi.org/10.1021/nl101888y
CAS
Article
Google Scholar
Chen, W.C., Rinzler, A.G., Guo, J.: Modeling and simulation of carbon nanotube-semiconductor heterojunction vertical field effect transistors. J. Appl. Phys. 113(23), 234501 (2013). https://doi.org/10.1063/1.4811295
CAS
Article
Google Scholar
Bradley, K., Cumings, J., Star, A., Gabriel, J.C.P., Gruner, G.: Influence of mobile ions on nanotube based FET devices. Nano Lett. 3(5), 639–641 (2003). https://doi.org/10.1021/nl025941j
CAS
Article
Google Scholar
Bradley, K., Gabriel, J.C.P., Briman, M., Star, A., Gruner, G.: Charge transfer from ammonia physisorbed on nanotubes. Phys. Rev. Lett. 91(21), 218301 (2003). https://doi.org/10.1103/physrevlett.91.218301
Article
Google Scholar
Bradley, K., Gabriel, J.C.P., Star, A., Gruner, G.: Short-channel effects in contact-passivated nanotube chemical sensors. Appl. Phys. Lett. 83(18), 3821–3823 (2003). https://doi.org/10.1063/1.1619222
CAS
Article
Google Scholar
Mahmoud, K.A., Hrapovic, S., Luong, J.H.T.: Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano 2(5), 1051–1057 (2008). https://doi.org/10.1021/nn8000774
CAS
Article
Google Scholar
Mahmoud, K.A., Luong, J.H.T.: Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocene-peptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode. Anal. Chem. 80(18), 7056–7062 (2008). https://doi.org/10.1021/ac801174r
CAS
Article
Google Scholar
Aguirre, C.M., Levesque, P.L., Paillet, M., Lapointe, F., St-Antoine, B.C., Desjardins, P., Martel, R.: The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors. Adv. Mater. 21(30), 3087 (2009). https://doi.org/10.1002/adma.200900550
CAS
Article
Google Scholar
Tao, Y., He, J., Zhang, X., Man, T.Y., Chan, M.: Full-band quantum transport based simulation for carbon nanotube field effect transistor from chirality to device performance. Mol. Simul. 34(1), 73–80 (2008). https://doi.org/10.1080/08927020701730377
CAS
Article
Google Scholar
Maehashi, K., Katsura, T., Kerman, K., Takamura, Y., Matsumoto, K., Tamiya, E.: Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal. Chem. 79(2), 782–787 (2007). https://doi.org/10.1021/ac060830g
CAS
Article
Google Scholar
Fang, Y., Hou, J.F., Fang, Y.: Flexible bio-interfaced nanoelectronics. J. Mater. Chem. C 2(7), 1178–1183 (2014). https://doi.org/10.1039/c3tc32322f
CAS
Article
Google Scholar
Pan, B., Xing, B.S.: Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42(24), 9005–9013 (2008). https://doi.org/10.1021/es801777n
CAS
Article
Google Scholar
Yang, K., Wu, W., Jing, Q., Zhu, L.: Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ. Sci. Technol. 42(21), 7931–7936 (2008). https://doi.org/10.1021/es801463v
CAS
Article
Google Scholar
Manzetti, S., Andersen, O., Garcia, C., Campos, E.: Molecular simulation of carbon nanotubes as sorptive materials: sorption effects towards retene, perylene and cholesterol to 100 degrees celsius and above. Mol. Simul. 42(14), 1183–1192 (2016). https://doi.org/10.1080/08927022.2016.1155212
CAS
Article
Google Scholar
Yang, S.T., Li, J.X., Shao, D.D., Hu, J., Wang, X.K.: Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 166(1), 109–116 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.003
CAS
Article
Google Scholar
Gupta, V.K., Agarwal, S., Saleh, T.A.: Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 45(6), 2207–2212 (2011). https://doi.org/10.1016/j.watres.2011.01.012
CAS
Article
Google Scholar
Ren, X.M., Chen, C.L., Nagatsu, M., Wang, X.K.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170(2–3), 395–410 (2011). https://doi.org/10.1016/j.cej.2010.08.045
CAS
Article
Google Scholar
Ren, X.M., Shao, D.D., Yang, S.T., Hu, J., Sheng, G.D., Tan, X.L., Wang, X.K.: Comparative study of Pb(II) sorption on XC-72 carbon and multi-walled carbon nanotubes from aqueous solutions. Chem. Eng. J. 170(1), 170–177 (2011). https://doi.org/10.1016/j.cej.2011.03.050
CAS
Article
Google Scholar
Wang, X.L., Lu, J.L., Xing, B.S.: Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environ. Sci. Technol. 42(9), 3207–3212 (2008). https://doi.org/10.1021/es702971g
CAS
Article
Google Scholar
Yu, J.G., Zhao, X.H., Yang, H., Chen, X.H., Yang, Q., Yu, L.Y., Jiang, J.H., Chen, X.Q.: Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ. 482, 241–251 (2014). https://doi.org/10.1016/j.scitotenv.2014.02.129
CAS
Article
Google Scholar
Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., Liang, Y.: Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164(2–3), 1517–1522 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.072
CAS
Article
Google Scholar
Ma, P.C., Mo, S.Y., Tang, B.Z., Kim, J.K.: Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6), 1824–1834 (2010). https://doi.org/10.1016/j.carbon.2010.01.028
CAS
Article
Google Scholar
Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part Appl. Sci. Manuf. 41(10), 1345–1367 (2010). https://doi.org/10.1016/j.compositesa.2010.07.003
CAS
Article
Google Scholar
Sahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35(7), 837–867 (2010). https://doi.org/10.1016/j.progpolymsci.2010.03.002
CAS
Article
Google Scholar
Choi, S.J., Kwon, T.H., Im, H., Moon, D.I., Baek, D.J., Seol, M.L., Duarte, J.P., Choi, Y.K.: A polydimethylsiloxane (PDMS) Sponge for the selective absorption of oil from water. ACS Appl. Mater. Interfaces. 3(12), 4552–4556 (2011). https://doi.org/10.1021/am201352w
CAS
Article
Google Scholar
Zhang, H.L.: Electrospun poly (lactic-co-glycolic acid)/multiwalled carbon nanotubes composite scaffolds for guided bone tissue regeneration. J. Bioact. Comp. Polym. 26(4), 347–362 (2011). https://doi.org/10.1177/0883911511413450
CAS
Article
Google Scholar
Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495), 1331–1334 (2000). https://doi.org/10.1126/science.290.5495.1331
CAS
Article
Google Scholar
Polizu, S., Savadogo, O., Poulin, P., Yahia, L.: Applications of carbon nanotubes-based biomaterials in biomedical nanotechnology. J. Nanosci. Nanotechnol. 6(7), 1883–1904 (2006). https://doi.org/10.1166/jnn.2006.197
CAS
Article
Google Scholar
Goldsmith, B.R., Coroneus, J.G., Khalap, V.R., Kane, A.A., Weiss, G.A., Collins, P.G.: Conductance-controlled point functionalization of single-walled carbon nanotubes. Science 315(5808), 77–81 (2007). https://doi.org/10.1126/science.1135303
CAS
Article
Google Scholar
Khalap, V.R., Sheps, T., Kane, A.A., Collins, P.G.: Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects. Nano Lett. 10(3), 896–901 (2010). https://doi.org/10.1021/nl9036092
CAS
Article
Google Scholar
Olive-Monllau, R., Esplandiu, M.J., Bartroli, J., Baeza, M., Cespedes, F.: Strategies for the optimization of carbon nanotube/polymer ratio in composite materials: applications as voltammetric sensors. Sens Actuators B Chem 146(1), 353–360 (2010). https://doi.org/10.1016/j.snb.2010.02.017
CAS
Article
Google Scholar
Wong, H.S.P., Salahuddin, S.: Memory leads the way to better computing. Nat. Nanotechnol. 10(3), 191–194 (2015). https://doi.org/10.1038/nnano.2015.29
CAS
Article
Google Scholar
Matsuo, Y., Tahara, K., Nakamura, E.: Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes. Org. Lett. 5(18), 3181–3184 (2003). https://doi.org/10.1021/ol0349514
CAS
Article
Google Scholar
Lin, D.H., Xing, B.S.: Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 42(19), 7254–7259 (2008). https://doi.org/10.1021/es801297u
CAS
Article
Google Scholar
Li, J., Lu, Y.J., Ye, Q., Cinke, M., Han, J., Meyyappan, M.: Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3(7), 929–933 (2003). https://doi.org/10.1021/nl034220x
CAS
Article
Google Scholar
Cai, D.Y., Song, M., Xu, C.X.: Highly conductive carbon-nanotube/graphite-oxide hybrid films. Adv. Mater. 20(9), 1706 (2008). https://doi.org/10.1002/adma.200702602
CAS
Article
Google Scholar
Gojny, F.H., Nastalczyk, J., Roslaniec, Z., Schulte, K.: Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370(5–6), 820–824 (2003). https://doi.org/10.1016/s0009-2614(03)00187-8
CAS
Article
Google Scholar
Theodore, M., Hosur, M., Thomas, J., Jeelani, S.: Influence of functionalization on properties of MWCNT-epoxy nanocomposites. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Proces 528(3), 1192–1200 (2011). https://doi.org/10.1016/j.msea.2010.09.095
CAS
Article
Google Scholar
Manzetti, S., Andersen, O.: A molecular dynamics study of nanoparticle-formation from bioethanol-gasoline blend emissions. Fuel 183, 55–63 (2016). https://doi.org/10.1016/j.fuel.2016.06.049
CAS
Article
Google Scholar
Manzetti, S.: Chemical and electronic properties of polycyclic aromatic hydrocarbons: a review. In: Meneses, B.A. (ed.) Handbook of Polycyclic Aromatic Hydrocarbons: Chemistry, Occurrence and Health Issues, vol. 423–435. Nova Sciences Publishers, New York (2012)
Google Scholar
Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., Kaneko, K.: Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett. 7(3), 583–587 (2007). https://doi.org/10.1021/nl0622597
CAS
Article
Google Scholar
Chang, C.M., Liu, Y.L.: Functionalization of multi-walled carbon nanotubes with furan and maleimide compounds through Diels-Alder cycloaddition. Carbon 47(13), 3041–3049 (2009). https://doi.org/10.1016/j.carbon.2009.06.058
CAS
Article
Google Scholar
Bonard, J.M., Stora, T., Salvetat, J.P., Maier, F., Stockli, T., Duschl, C., Forro, L., deHeer, W.A., Chatelain, A.: Purification and size-selection of carbon nanotubes. Adv. Mater. 9(10), 827 (1997). https://doi.org/10.1002/adma.19970091014
CAS
Article
Google Scholar
Bandow, S., Rao, A.M., Williams, K.A., Thess, A., Smalley, R.E., Eklund, P.C.: Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 101(44), 8839–8842 (1997). https://doi.org/10.1021/jp972026r
CAS
Article
Google Scholar
Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G.: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3(2), 269–273 (2003). https://doi.org/10.1021/nl025924u
CAS
Article
Google Scholar
Jiang, L.Q., Gao, L., Sun, J.: Production of aqueous colloidal dispersions of carbon nanotubes. J. Colloid Interface Sci. 260(1), 89–94 (2003). https://doi.org/10.1016/s0021-9797(02)00176-5
CAS
Article
Google Scholar
Ndiaye, A.L., Varenne, C., Bonnet, P., Petit, E., Spinelle, L., Brunet, J., Pauly, A., Lauron, B.: Elaboration of SWNTs-based gas sensors using dispersion techniques: evaluating the role of the surfactant and its influence on the sensor response. Sens. Actuators B Chem. 162(1), 95–101 (2012). https://doi.org/10.1016/j.snb.2011.12.041
CAS
Article
Google Scholar
Fatemi, S.M., Foroutan, M.: Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J. Nanostruct. Chem. 6(1), 29–40 (2016). https://doi.org/10.1007/s40097-015-0175-9
CAS
Article
Google Scholar
Park, S.H., Bae, J.: Tailoring environment friendly carbon nanostructures by surfactant mediated interfacial engineering. J. Ind. Eng. Chem. 30, 1–9 (2015). https://doi.org/10.1016/j.jiec.2015.05.005
CAS
Article
Google Scholar
Wang, H.: Dispersing carbon nanotubes using surfactants. Curr. Opin. Colloid Interface Sci. 14(5), 364–371 (2009). https://doi.org/10.1016/j.cocis.2009.06.004
CAS
Article
Google Scholar
Hilding, J., Grulke, E.A., Zhang, Z.G., Lockwood, F.: Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 24(1), 1–41 (2003). https://doi.org/10.1081/dis-120017941
CAS
Article
Google Scholar
Lu, K.L., Lago, R.M., Chen, Y.K., Green, M.L.H., Harris, P.J.F., Tsang, S.C.: Mechanical damage of carbon nanotubes by ultrasound. Carbon 34(6), 814–816 (1996). https://doi.org/10.1016/0008-6223(96)89470-x
CAS
Article
Google Scholar
Jedrzejewska, A., Kalenczuk, R.J., Mijowska, E.: Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD. Mater. Sci. Poland 29(4), 292–298 (2011). https://doi.org/10.2478/s13536-011-0043-3
CAS
Article
Google Scholar
Lukaszczuk, P., Mijowska, E., Kalenczuk, R.: Selective oxidation of metallic single-walled carbon nanotubes. Chem. Pap. 67(9), 1250–1254 (2013). https://doi.org/10.2478/s11696-013-0345-5
CAS
Article
Google Scholar
Liang, S.L., Li, G.F., Tian, R.: Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation. J. Mater. Sci. 51(7), 3513–3524 (2016). https://doi.org/10.1007/s10853-015-9671-z
CAS
Article
Google Scholar
Bibi, S., Yasin, T., Nawaz, M., Price, G.J.: Comparative study of the modification of multi-wall carbon nanotubes by gamma irradiation and sonochemically assisted acid etching. Mater. Chem. Phys. 207, 23–29 (2018). https://doi.org/10.1016/j.matchemphys.2017.12.047
CAS
Article
Google Scholar
Price, G.J., Nawaz, M., Yasin, T., Bibi, S.: Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance. Ultrason. Sonochem. 40, 123–130 (2018). https://doi.org/10.1016/j.ultsonch.2017.02.021
CAS
Article
Google Scholar
Heller, D.A., Mayrhofer, R.M., Baik, S., Grinkova, Y.V., Usrey, M.L., Strano, M.S.: Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126(44), 14567–14573 (2004). https://doi.org/10.1021/ja046450z
CAS
Article
Google Scholar
Liu, P., Wang, T.M.: Ultrasonic-assisted chemical oxidative cutting of multiwalled carbon nanotubes with ammonium persulfate in neutral media. Appl. Phys. Mater. Sci. Process. 97(4), 771–775 (2009). https://doi.org/10.1007/s00339-009-5314-z
CAS
Article
Google Scholar
Liu, Y.Q., Gao, L., Sun, J., Zheng, S., Jiang, L.Q., Wang, Y., Kajiura, H., Li, Y.M., Noda, K.: A multi-step strategy for cutting and purification of single-walled carbon nanotubes. Carbon 45(10), 1972–1978 (2007). https://doi.org/10.1016/j.carbon.2007.06.009
CAS
Article
Google Scholar
Luong, J.H.T., Hrapovic, S., Liu, Y.L., Yang, D.Q., Sacher, E., Wang, D.S., Kingston, C.T., Enright, G.D.: Oxidation, deformation, and destruction of carbon nanotubes in aqueous ceric sulfate. J. Phys. Chem. B 109(4), 1400–1407 (2005). https://doi.org/10.1021/jp0454422
CAS
Article
Google Scholar
Park, H.J., Park, M., Chang, J.Y., Lee, H.: The effect of pre-treatment methods on morphology and size distribution of multi-walled carbon nanotubes. Nanotechnology 19(33), 335702 (2008). https://doi.org/10.1088/0957-4484/19/33/335702
CAS
Article
Google Scholar
Shelimov, K.B., Esenaliev, R.O., Rinzler, A.G., Huffman, C.B., Smalley, R.E.: Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 282(5–6), 429–434 (1998). https://doi.org/10.1016/s0009-2614(97)01265-7
CAS
Article
Google Scholar
Shuba, M.V., Paddubskaya, A.G., Kuzhir, P.P., Maksimenko, S.A., Ksenevich, V.K., Niaura, G., Seliuta, D., Kasalynas, I., Valusis, G.: Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids. Nanotechnology 23(49), 495714 (2012). https://doi.org/10.1088/0957-4484/23/49/495714
CAS
Article
Google Scholar
Wang, Y., Gao, L., Sun, J., Liu, Y.Q., Zheng, S., Kajiura, H., Li, Y.M., Noda, K.: An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes. Chem. Phys. Lett. 432(1–3), 205–208 (2006). https://doi.org/10.1016/j.cplett.2006.10.054
CAS
Article
Google Scholar
Zhang, M., Yudasaka, M., Koshio, A., Jabs, C., Ichihashi, T., Iijima, S.: Structure of single-wall carbon nanotubes purified and cut using polymer. Appl. Phys. Mater. Sci. Process. 74(1), 7–10 (2002). https://doi.org/10.1007/s003390100983
CAS
Article
Google Scholar
Zhang, M.F., Yudasaka, M., Koshio, A., Iijima, S.: Effect of polymer and solvent on purification and cutting of single-wall carbon nanotubes. Chem. Phys. Lett. 349(1–2), 25–30 (2001). https://doi.org/10.1016/s0009-2614(01)01181-2
CAS
Article
Google Scholar
Tibbetts, G.G., Meisner, G.P., Olk, C.H.: Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers. Carbon 39(15), 2291–2301 (2001). https://doi.org/10.1016/s0008-6223(01)00051-3
CAS
Article
Google Scholar
Jones, C.P., Jurkschat, K., Crossley, A., Compton, R.G., Riehl, B.L., Banks, C.E.: Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations. Langmuir 23(18), 9501–9504 (2007). https://doi.org/10.1021/la701522p
CAS
Article
Google Scholar
Jhi, S.H., Kwon, Y.K., Bradley, K., Gabriel, J.C.P.: Hydrogen storage by physisorption: beyond carbon. Solid State Commun. 129(12), 769–773 (2004). https://doi.org/10.1016/j.ssc.2003.12.032
CAS
Article
Google Scholar
Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623), 377–379 (1997). https://doi.org/10.1038/386377a0
CAS
Article
Google Scholar
Joiner, C., Gabriel, J.-C., Gruner, G., Star, A.: Nanotube sensor devices for DNA detection USA Patent (2007)
Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., Aida, T.: Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628), 2072–2074 (2003). https://doi.org/10.1126/science.1082289
CAS
Article
Google Scholar
Fukushima, T., Aida, T.: Ionic liquids for soft functional materials with carbon nanotubes. Chem. Eur. J. 13(18), 5048–5058 (2007). https://doi.org/10.1002/chem.200700554
CAS
Article
Google Scholar
Barisci, J.N., Wallace, G.G., MacFarlane, D.R., Baughman, R.H.: Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem. Commun. 6(1), 22–27 (2004). https://doi.org/10.1016/j.elecom.2003.09.015
CAS
Article
Google Scholar
Wang, J.Y., Chu, H.B., Li, Y.: Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2(12), 2540–2546 (2008). https://doi.org/10.1021/nn800510g
CAS
Article
Google Scholar
Raiah, K., Djalab, A., Hadj-Ziane-Zafour, A., Soula, B., Galibert, A.M., Flahaut, E.: Influence of the hydrocarbon chain length of imidazolium-based ionic liquid on the dispersion and stabilization of double-walled carbon nanotubes in water. Colloids Surf. Physicochem. Eng. Asp. 469, 107–116 (2015). https://doi.org/10.1016/j.colsurfa.2015.01.015
CAS
Article
Google Scholar
Jiang, C., Saha, A., Xiang, C., Young, C.C., Tour, J.M., Pasquali, M., Marti, A.A.: Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7(5), 4503–4510 (2013). https://doi.org/10.1021/nn4011544
CAS
Article
Google Scholar
Petit, P., Mathis, C., Journet, C., Bernier, P.: Tuning and monitoring the electronic structure of carbon nanotubes. Chem. Phys. Lett. 305(5–6), 370–374 (1999). https://doi.org/10.1016/s0009-2614(99)00399-1
CAS
Article
Google Scholar
Penicaud, A., Poulin, P., Anglaret, E., Petit, P., Roubeau, O., Enouz, S., Loiseau, A.: Dissolution douce of single walled carbon nanotubes. In: Kuzmany, H., Fink, J., Mehring, M., Roth, S. (eds.) Electronic Properties of Novel Nanostructures, vol. 786. AIP Conference Proceedings, pp. 266–270 (2005)
Penicaud, A., Poulin, P., Derre, A., Anglaret, E., Petit, P.: Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127(1), 8–9 (2005). https://doi.org/10.1021/ja0443373
CAS
Article
Google Scholar
Voiry, D., Drummond, C., Penicaud, A.: Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft. Matter. 7(18), 7998–8001 (2011). https://doi.org/10.1039/c1sm05959a
CAS
Article
Google Scholar
Penicaud, A., Hsu, J., Reed, C.A., Koch, A., Khemani, K.C., Allemand, P.M., Wudl, F.: C60.-with coordination-compounds—(tetraphenylporphinato)chromium(III) fulleride. J. Am. Chem. Soc. 113(17), 6698–6700 (1991). https://doi.org/10.1021/ja00017a066
CAS
Article
Google Scholar
Moya, S.E., Ilie, A., Bendall, J.S., Hernandez-Lopez, J.L., Ruiz-Garcia, J., Huck, W.T.S.: Assembly of polyelectrolytes on CNTs by Van der Waals interactions and fabrication of LBL polyelectrolyte/CNT composites. Macromol. Chem. Phys. 208(6), 603–608 (2007). https://doi.org/10.1002/macp.200600530
CAS
Article
Google Scholar
Han, J., Kim, H., Kim, D.Y., Jo, S.M., Jang, S.Y.: Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells. ACS Nano 4(6), 3503–3509 (2010). https://doi.org/10.1021/nn100574g
CAS
Article
Google Scholar
Paloniemi, H., Aaritalo, T., Laiho, T., Liuke, H., Kocharova, N., Haapakka, K., Terzi, F., Seeber, R., Lukkari, J.: Water-soluble full-length single-wall carbon nanotube polyelectrolytes: preparation and characterization. J. Phys. Chem. B 109(18), 8634–8642 (2005). https://doi.org/10.1021/jp0443097
CAS
Article
Google Scholar
Wang, J., Musameh, M., Lin, Y.H.: Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125(9), 2408–2409 (2003). https://doi.org/10.1021/ja028951v
CAS
Article
Google Scholar
Guzman, C., Orozco, G., Verde, Y., Jimenez, S., Godinez, L.A., Juaristi, E., Bustos, E.: Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine. Electrochim. Acta 54(6), 1728–1732 (2009). https://doi.org/10.1016/j.electacta.2008.09.072
CAS
Article
Google Scholar
Banerjee, S., Hemraj-Benny, T., Wong, S.S.: Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 17(1), 17–29 (2005). https://doi.org/10.1002/adma.200401340
CAS
Article
Google Scholar
Porter, J.J., Perkins, W.S.: A study of thermodynamics of sorption of 3 direct dyes on cellophane film. Text. Res. J. 40(1), 81 (1970). https://doi.org/10.1177/004051757004000112
CAS
Article
Google Scholar
Zhang, W., Silva, S.R.P.: Reversible functionalization of multi-walled carbon nanotubes with organic dyes. Scripta Mater. 63(6), 645–648 (2010). https://doi.org/10.1016/j.scriptamat.2010.05.037
CAS
Article
Google Scholar
Pan, W.H., Lue, S.J., Chang, C.M., Liu, Y.L.: Alkali doped polyvinyl alcohol/multi-walled carbon nano-tube electrolyte for direct methanol alkaline fuel cell. J. Membr. Sci. 376(1–2), 225–232 (2011). https://doi.org/10.1016/j.memsci.2011.04.026
CAS
Article
Google Scholar
Shieh, Y.T., Liu, G.L., Wu, H.H., Lee, C.C.: Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9), 1880–1890 (2007). https://doi.org/10.1016/j.carbon.2007.04.028
CAS
Article
Google Scholar
Liu, Z.L., Zhao, B., Guo, C.L., Sun, Y.J., Shi, Y., Yang, H.B., Li, Z.A.: Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media. J. Colloid Interface Sci. 351(1), 233–238 (2010). https://doi.org/10.1016/j.jcis.2010.07.035
CAS
Article
Google Scholar
Liu, Y.L., Li, S.H., Lee, H.C., Hsu, K.Y.: Selective reactivity of aromatic amines toward 5-maleimidoisophthalic acid for preparation of polyamides bearing N-phenylmaleimide moieties. React. Funct. Polym. 66(9), 924–930 (2006). https://doi.org/10.1016/j.reactfunctpolym.2005.12.005
CAS
Article
Google Scholar
Maio, A., Botta, L., Tito, A.C., Pellegrino, L., Daghetta, M., Scaffaro, R.: Statistical study of the influence of CNTs purification and plasma functionalization on the properties of polycarbonate-CNTs nanocomposites. Plasma Process Polym. 11(7), 664–677 (2014). https://doi.org/10.1002/ppap.201400008
CAS
Article
Google Scholar
Ferreira, F.V., Francisco, W., de Menezes, B.R.C., Cividanes, L.D., Coutinho, A.D., Thim, G.P.: Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl. Surf. Sci. 357, 2154–2159 (2015). https://doi.org/10.1016/j.apsusc.2015.09.202
CAS
Article
Google Scholar
Arnold, M.S., Stupp, S.I., Hersam, M.C.: Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5(4), 713–718 (2005). https://doi.org/10.1021/nl050133o
CAS
Article
Google Scholar
Hersam, M.C.: Materials science nanotubes sorted using DNA. Nature 460(7252), 186–187 (2009). https://doi.org/10.1038/460186a
CAS
Article
Google Scholar
Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., McLean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J.: Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302(5650), 1545–1548 (2003). https://doi.org/10.1126/science.1091911
CAS
Article
Google Scholar
Xie, X.L., Mai, Y.W., Zhou, X.P.: Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R-Rep. 49(4), 89–112 (2005). https://doi.org/10.1016/j.mser.2005.04.002
CAS
Article
Google Scholar
Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P.: A simple method to make carbon nanotubes fibers. In: Kuzmany, H., Fink, J., Mehring, M., Roth, S. (eds.) Electronic Properties of Molecular Nanostructures, vol. 591. AIP Conference Proceedings, pp. 562–567. (2001)
Vigolo, B., Launois, P., Lucas, M., Badaire, S., Bernier, P., Poulin, P.: Fibers of carbon nanotubes. In: Bernier, P., Ajayan, P., Iwasa, Y., Nikolaev, P. (eds.) Making Functional Materials with Nanotubes, vol. 706. Materials Research Society Symposium Proceedings, pp. 3–8 (2002)
Davidson, P., Gabriel, J.C., Levelut, A.M., Batail, P.: A new nematic suspension based on all-inorganic polymer rods. Europhys. Lett. 21(3), 317–322 (1993). https://doi.org/10.1209/0295-5075/21/3/011
CAS
Article
Google Scholar
Davidson, P., Gabriel, J.C., Levelut, A.M., Batail, P.: Nematic liquid-crystalline mineral polymerS. Adv. Mater. 5(9), 665–668 (1993). https://doi.org/10.1002/adma.19930050916
CAS
Article
Google Scholar
Donkai, N., Hoshino, H., Kajiwara, K., Miyamoto, T.: Lyotropic mesophase of imogolite. 3. Observation of liquid-crystal structure by scanning electron and novel polarized optical microscopy. Makromolekulare Chemie Macromol. Chem. Phys. 194(2), 559–580 (1993)
CAS
Article
Google Scholar
Gabriel, J.C.P., Batail, P.: Liquid crystals with a mineral core. Actual. Chim. 12(8–9), 13–21 (1999)
Google Scholar
Gabriel, J.C.P., Davidson, P.: New trends in colloidal liquid crystals based on mineral moieties. Adv. Mater. 12(1), 9 (2000). https://doi.org/10.1002/(sici)1521-4095(200001)12:1%3c9:aid-adma9%3e3.0.co;2-6
CAS
Article
Google Scholar
Davidson, P., Batail, P., Gabriel, J.C.P., Livage, J., Sanchez, C., Bourgaux, C.: Mineral liquid crystalline polymers. Prog. Polym. Sci. 22(5), 913–936 (1997). https://doi.org/10.1016/s0079-6700(97)00012-9
CAS
Article
Google Scholar
Gabriel, J.C.P., Davidson, P.: Mineral liquid crystals from self-assembly of anisotropic nanosystems. In: Antonietti, M. (ed.) Colloid Chemistry 1, vol. 226. Topics in Current Chemistry-Series, pp. 119–172 (2003)
Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265(5176), 1212–1214 (1994). https://doi.org/10.1126/science.265.5176.1212
CAS
Article
Google Scholar
Arjmand, M., Mahmoodi, M., Gelves, G.A., Park, S., Sundararaj, U.: Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 49(11), 3430–3440 (2011). https://doi.org/10.1016/j.carbon.2011.04.039
CAS
Article
Google Scholar
Dror, Y., Salalha, W., Khalfin, R.L., Cohen, Y., Yarin, A.L., Zussman, E.: Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17), 7012–7020 (2003). https://doi.org/10.1021/la034234i
CAS
Article
Google Scholar
Haggenmueller, R., Gommans, H.H., Rinzler, A.G., Fischer, J.E., Winey, K.I.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000). https://doi.org/10.1016/s0009-2614(00)01013-7
CAS
Article
Google Scholar
Huang, Y., Duan, X.F., Wei, Q.Q., Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291(5504), 630–633 (2001). https://doi.org/10.1126/science.291.5504.630
CAS
Article
Google Scholar
Potschke, P., Bhattacharyya, A.R., Janke, A.: Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur. Polym. J. 40(1), 137–148 (2004). https://doi.org/10.1016/j.eurpolymj.2003.08.008
CAS
Article
Google Scholar
Lanticse, L.J., Tanabe, Y., Matsui, K., Kaburagi, Y., Suda, K., Hoteida, M., Endo, M., Yasuda, E.: Shear-induced preferential alignment of carbon nanotubes resulted in anisotropic electrical conductivity of polymer composites. Carbon 44(14), 3078–3086 (2006). https://doi.org/10.1016/j.carbon.2006.05.008
CAS
Article
Google Scholar
Onsager, L.: The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51(4), 627–659 (1949). https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
CAS
Article
Google Scholar
Vroege, G.J.: The isotropic-nematic phase-transition and other properties of a solution of semiflexible poly-electrolytes. J. Chem. Phys. 90(8), 4560–4566 (1989)
CAS
Article
Google Scholar
Vroege, G.J., Lekkerkerker, H.N.W.: Phase-transitions in lyotropic colloidal and polymer liquid-crystals. Rep. Prog. Phys. 55(8), 1241–1309 (1992). https://doi.org/10.1088/0034-4885/55/8/003
CAS
Article
Google Scholar
Somoza, A.M., Sagui, C., Roland, C.: Liquid-crystal phases of capped carbon nanotubes. Phys. Rev. B 63(8), 081403 (2001). https://doi.org/10.1103/physrevb.63.081403
Article
Google Scholar
Song, W.H., Kinloch, I.A., Windle, A.H.: Nematic liquid crystallinity of multiwall carbon nanotubes. Science 302(5649), 1363 (2003). https://doi.org/10.1126/science.1089764
CAS
Article
Google Scholar
Song, W.H., Windle, A.H.: Isotropic-nematic phase transition of dispersions of multiwall carbon nanotubes. Macromolecules 38(14), 6181–6188 (2005). https://doi.org/10.1021/ma047691u
CAS
Article
Google Scholar
Badaire, S., Zakri, C., Maugey, M., Derre, A., Barisci, J.N., Wallace, G., Poulin, P.: Liquid crystals of DNA-stabilized carbon nanotubes. Adv. Mater. 17(13), 1673 (2005). https://doi.org/10.1002/adma.200401741
CAS
Article
Google Scholar
Camerel, F., Gabriel, J.C.P., Batail, P., Davidson, P., Lemaire, B., Schmutz, M., Guilk-Krzywicki, T., Bourgaux, C.: Original single walled nanotubules based on weakly interacting covalent mineral polymers, (1)(infinity) Nb2PS10- in N-methylformamide. Nano Lett. 2(4), 403–407 (2002). https://doi.org/10.1021/nl010090l
CAS
Article
Google Scholar
Paineau, E., Krapf, M.E., Amara, M.S., Matskova, N.V., Dozov, I., Rouziere, S., Thill, A., Launois, P., Davidson, P.: A liquid-crystalline hexagonal columnar phase in highly-dilute suspensions of imogolite nanotubes. Nat. Commun. 7, 10271 (2016). https://doi.org/10.1038/ncomms10271
CAS
Article
Google Scholar
Gabriel, J.C.P., Camerel, F., Lemaire, B.J., Desvaux, H., Davidson, P., Batail, P.: Swollen liquid-crystalline lamellar phase based on extended solid-like sheets. Nature 413(6855), 504–508 (2001). https://doi.org/10.1038/35097046
CAS
Article
Google Scholar
Davidson, P., Penisson, C., Constantin, D., Gabriel, J.C.P.: Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets. Proc. Natl. Acad. Sci. USA 115(26), 6662–6667 (2018). https://doi.org/10.1073/pnas.1802692115
CAS
Article
Google Scholar
Kleshchanok, D., Holmqvist, P., Meijer, J.M., Lekkerkerker, H.N.: Lyotropic smectic B phase formed in suspensions of charged colloidal platelets. J. Am. Chem. Soc. 134(13), 5985–5990 (2012). https://doi.org/10.1021/ja300527w
CAS
Article
Google Scholar
Wensink, H.H.: Columnar versus smectic order in systems of charged colloidal rods. J. Chem. Phys. 126(19), 194901 (2007). https://doi.org/10.1063/1.2730819
CAS
Article
Google Scholar
Vroege, G.J., Thies-Weesie, D.M.E., Petukhov, A.V., Lemaire, B.J., Davidson, P.: Smectic liquid-crystalline order in suspensions of highly polydisperse goethite nanorods. Adv. Mater. 18(19), 2565 (2006). https://doi.org/10.1002/adma.200601112
CAS
Article
Google Scholar
Miyamoto, N., Nakato, T.: Liquid crystalline nature of K4Nb6O17 nanosheet sols and their macroscopic alignment. Adv. Mater. 14(18), 1267 (2002). https://doi.org/10.1002/1521-4095(20020916)14:18%3c1267:aid-adma1267%3e3.0.co;2-o
CAS
Article
Google Scholar
Lim, S.H., Jang, H.S., Ha, J.M., Kim, T.H., Kwasniewski, P., Narayanan, T., Jin, K.S., Choi, S.M.: Highly ordered and highly aligned two-dimensional binary superlattice of a SWNT/cylindrical-micellar system. Angew. Chem. Int. Ed. 53(46), 12548–12554 (2014). https://doi.org/10.1002/anie.201403458
CAS
Article
Google Scholar
Vijayaraghavan, D.: Self-assembled ordering of single-walled carbon nanotubes in a lyotropic liquid crystal system. J. Mol. Liq. 199, 128–132 (2014). https://doi.org/10.1016/j.molliq.2014.08.022
CAS
Article
Google Scholar
Lustig, S.R., Boyes, E.D., French, R.H., Gierke, T.D., Harmer, M.A., Hietpas, P.B., Jagota, A., McLean, R.S., Mitchell, G.P., Onoa, G.B., Sams, K.D.: Lithographically cut single-walled carbon nanotubes: controlling length distribution and introducing end-group functionality. Nano Lett. 3(8), 1007–1012 (2003). https://doi.org/10.1021/nl034219y
CAS
Article
Google Scholar
Kamalakaran, R., Terrones, M., Seeger, T., Kohler-Redlich, P., Ruhle, M., Kim, Y.A., Hayashi, T., Endo, M.: Synthesis of thick and crystalline nanotube arrays by spray pyrolysis. Appl. Phys. Lett. 77(21), 3385–3387 (2000). https://doi.org/10.1063/1.1327611
CAS
Article
Google Scholar
Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Ruhle, M., Kroto, H.W., Walton, D.R.M.: Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem. Phys. Lett. 338(2–3), 101–107 (2001). https://doi.org/10.1016/s0009-2614(01)00278-0
CAS
Article
Google Scholar
Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Ruhle, M., Walton, D.R.M., Kroto, H.W.: Pure and aligned carbon nanotubes produced by the pyrolysis of benzene-based aerosols. In: Kuzmany, H., Fink, J., Mehring, M., Roth, S. (eds.) Electronic Properties of Molecular Nanostructures, vol. 591. AIP Conference Proceedings, pp. 204–207 (2001)
Tang, G.L., Zhang, X.F., Yang, S.H., Derycke, V., Benattar, J.J.: New confinement method for the formation of highly aligned and densely packed single-walled carbon nanotube monolayers. Small 6(14), 1488–1491 (2010). https://doi.org/10.1002/smll.201000212
CAS
Article
Google Scholar
Sridi, N., Lebental, B., Merliot, E., Cojocaru, C.S., Azevedo, J., Benattar, J.J., Nowodzinski, A., Gabriel, J.C.P., Ghis, A.: Mechanical properties of suspended few layers graphene sheets. Nanotechnology 2012, vol. 1: Advanced Materials, Cnts, Particles, Films and Composites (2012)
Sridi, N., Lebental, B., Azevedo, J., Gabriel, J.C.P., Ghis, A.: Electrostatic method to estimate the mechanical properties of suspended membranes applied to nickel-coated graphene oxide. Appl. Phys. Lett. 103(5), 051907 (2013). https://doi.org/10.1063/1.4817301
CAS
Article
Google Scholar
Dyke, C.A., Tour, J.M.: Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc. 125(5), 1156–1157 (2003). https://doi.org/10.1021/ja0289806
CAS
Article
Google Scholar
Tasis, D., Tagmatarchis, N., Georgakilas, V., Prato, M.: Soluble carbon nanotubes. Chem. Eur. J. 9(17), 4001–4008 (2003). https://doi.org/10.1002/chem.200304800
CAS
Article
Google Scholar
Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1(2), 180–192 (2005). https://doi.org/10.1002/smll.200400118
CAS
Article
Google Scholar
Burghard, M.: Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf. Sci. Rep. 58(1–4), 1–109 (2005). https://doi.org/10.1016/j.surfrep.2005.07.001
CAS
Article
Google Scholar
Hirsch, A., Vostrowsky, O.: Functionalization of carbon nanotubes. In: Schluter, A.D. (ed.) Functional molecular nanostructures, vol. 245. Topics in Current Chemistry-Series, pp. 193–237 (2005)
Prato, M., Kostarelos, K., Bianco, A.: Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41(1), 60–68 (2008). https://doi.org/10.1021/ar700089b
CAS
Article
Google Scholar
Coleman, J.N.: Liquid-phase exfoliation of nanotubes and graphene. Adv. Func. Mater. 19(23), 3680–3695 (2009). https://doi.org/10.1002/adfm.200901640
CAS
Article
Google Scholar
Meng, L.J., Fu, C.L., Lu, Q.H.: Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 19(7), 801–810 (2009). https://doi.org/10.1016/j.pnsc.2008.08.011
CAS
Article
Google Scholar
Peng, X.H., Wong, S.S.: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21(6), 625–642 (2009). https://doi.org/10.1002/adma.200801464
CAS
Article
Google Scholar
Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A., Prato, M.: Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 38(8), 2214–2230 (2009). https://doi.org/10.1039/b518111a
CAS
Article
Google Scholar
Karousis, N., Tagmatarchis, N., Tasis, D.: Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 110(9), 5366–5397 (2010). https://doi.org/10.1021/cr100018g
CAS
Article
Google Scholar
Wepasnick, K.A., Smith, B.A., Bitter, J.L., Fairbrother, D.H.: Chemical and structural characterization of carbon nanotube surfaces. Anal. Bioanal. Chem. 396(3), 1003–1014 (2010). https://doi.org/10.1007/s00216-009-3332-5
CAS
Article
Google Scholar
Ferreira, F.V., Francisco, W., Menezes, B.R.C., Brito, F.S., Coutinho, A.S., Cividanes, L.S., Coutinho, A.R., Thim, G.P.: Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl. Surf. Sci. 389, 921–929 (2016). https://doi.org/10.1016/j.apsusc.2016.07.164
CAS
Article
Google Scholar
Scaffaro, R., Maio, A., Agnello, S., Glisenti, A.: plasma functionalization of multiwalled carbon nanotubes and their use in the preparation of nylon 6-based nanohybrids. Plasma Process. Polym. 9(5), 503–512 (2012). https://doi.org/10.1002/ppap.201100140
CAS
Article
Google Scholar
Mawhinney, D.B., Naumenko, V., Kuznetsova, A., Yates, J.T., Liu, J., Smalley, R.E.: Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J. Am. Chem. Soc. 122(10), 2383–2384 (2000). https://doi.org/10.1021/ja994094s
CAS
Article
Google Scholar
Banerjee, S., Wong, S.S.: Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J. Phys. Chem. B 106(47), 12144–12151 (2002). https://doi.org/10.1021/jp026304k
CAS
Article
Google Scholar
Simmons, J.M., Nichols, B.M., Baker, S.E., Marcus, M.S., Castellini, O.M., Lee, C.S., Hamers, R.J., Eriksson, M.A.: Effect of ozone oxidation on single-walled carbon nanotubes. J. Phys. Chem. B 110(14), 7113–7118 (2006). https://doi.org/10.1021/jp0548422
CAS
Article
Google Scholar
te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Guerra, C.F., Van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22(9), 931–967 (2001). https://doi.org/10.1002/jcc.1056
Article
Google Scholar
Saleh, G., Gatti, C., Lo Presti, L.: Non-covalent interaction via the reduced density gradient: Independent atom model vs experimental multipolar electron densities. Comput. Theor. Chem. 998, 148–163 (2012). https://doi.org/10.1016/j.comptc.2012.07.014
CAS
Article
Google Scholar
Sochava, I.V., Trapeznikova, O.N.: The specific heat of chain structures at low temperatures. Dokl. Akad. Nauk. SSSR 113(4), 784–786 (1957)
Google Scholar
Umoren, S.A., Obot, I.B., Madhankumar, A., Gasem, Z.M.: Effect of degree of hydrolysis of polyvinyl alcohol on the corrosion inhibition of steel: theoretical and experimental studies. J. Adhes. Sci. Technol. 29(4), 271–295 (2015). https://doi.org/10.1080/01694243.2014.985281
CAS
Article
Google Scholar
Wurm, F., Hofmann, A.M., Thomas, A., Dingels, C., Frey, H.: Alpha, omega(n)-heterotelechelic hyperbranched polyethers solubilize carbon nanotubes. Macromol. Chem. Phys. 211(8), 932–939 (2010). https://doi.org/10.1002/macp.200900652
CAS
Article
Google Scholar