Skip to main content

Carbon Nanotubes: Dispersion Challenge and How to Overcome It

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Owing to their exceptional combination of electrical, thermal, mechanical, and optical properties, carbon nanotubes (CNT) have been recognized as favorable materials to be used in various applications, for example, nanocomposites, biotechnology, electronics, and energy related devices. Exploiting their remarkable properties in solutions and composites depends on their state of dispersion. However, their great potential has been hindered by their intrinsic tendency to undergo bundling and lack of dispersibility in aqueous and nonaqueous media. It encourages several researches to improve the dispersibility of CNT in various environments. CNT dispersion commonly deals with surface modification which can be carried out either covalently or noncovalently. Covalent approach enables one to produce versatile functional groups on the CNT surface, which are covalently attached to the sidewall. It is desirable for improving CNT dispersibility in various environments. However, these methods disrupt the π-electron system of the CNT which is in charge for its remarkable electrical properties. It also imparts some structural damage and deteriorates the mechanical properties too. Noncovalent approaches however involve no chemical reaction and associate with physical adsorption of stabilizing agents on the CNT. Beside surface modification, CNT exfoliation by introducing energy to its bundles is also essential for CNT dispersion. Various procedures for surface modification as well as different methods for CNT exfoliation are briefly overviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abo-Hamad A, AlSaadi MA, Hayyan M, Juneidi I, Hashim MA (2016) Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a review. Electrochim Acta 193:321–343

    Article  CAS  Google Scholar 

  • Abuilaiwi FA, Laoui T, Al-Harthi M, Atieh MA (2010) Modification and functionalization of multiwalled carbon nanotube (MWCNT) via fischer esterification. Arab J Sci Eng 35(1):37–48

    CAS  Google Scholar 

  • Al-Hamadani YAJ, Chu KH, Son A, Heo J, Her N, Jang M et al (2015) Stabilization and dispersion of carbon nanomaterials in aqueous solutions: a review. Sep Purif Technol 156:861–874

    Article  CAS  Google Scholar 

  • Backes C (2012) Noncovalent functionalization of carbon nanotubes: fundamental aspects of dispersion and separation in water, Springer, Berlin/Heidelberg

    Google Scholar 

  • Banerjee S, Wong SS (2002) Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B 106(47):12144–12151

    Article  CAS  Google Scholar 

  • Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29

    Article  CAS  Google Scholar 

  • Bauschlicher CW (2000) Hydrogen and fluorine binding to the sidewalls of a (10,0) carbon nanotube. Chem Phys Lett 322(3):237–241

    Article  CAS  Google Scholar 

  • Boul PJ, Liu J, Mickelson ET, Huffman CB, Ericson LM, Chiang IW et al (1999) Reversible sidewall functionalization of buckytubes. Chem Phys Lett 310(3):367–372

    Article  CAS  Google Scholar 

  • Cahill P (1995) Semiempirical study of hydrogen addition to single-walled carbon nanotubes. Sandia National Labs, Albuquerque

    Google Scholar 

  • Carey FA, Sundberg RJ (2007) Advanced organic chemistry: part B: reaction and synthesis. Springer Science & Business Media, Boston, US

    Google Scholar 

  • Chamayou A, Dodds JA (2007) Chapter 8 air jet milling. In: Salman AD, Ghadiri M, Hounslow MJ (eds) Handbook of powder technology. 12. Amsterdam, NL, Elsevier Science B.V, pp 421–435

    Google Scholar 

  • Chen J, Yan L, Song W, Xu D (2018) Interfacial characteristics of carbon nanotube-polymer composites: a review. Compos A: Appl Sci Manuf 114:149–169

    Article  CAS  Google Scholar 

  • Chernyak SA, Ivanov AS, Maslakov KI, Egorov AV, Shen Z, Savilov SS et al (2017) Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view. PCCP 19(3):2276–2285

    Article  CAS  Google Scholar 

  • Cividanes L, Franceschi W, Ferreira F, Menezes B, Sales R, Thim G (2017) How do CNT affect the branch and crosslink reactions in CNT-epoxy. Mater Res Express 4(10):105101

    Article  Google Scholar 

  • Claudia Backes AH (2010) Noncovalent functionalization of carbon nanotubes. In: Takeshi Akasaka FW, Nagase S (eds) Chemistry of nanocarbons, pp 1–48

    Google Scholar 

  • Das A, Stöckelhuber K, Jurk R, Fritzsche J, Klüppel M, Heinrich G (2009) Coupling activity of ionic liquids between diene elastomers and multi-walled carbon nanotubes. Carbon 47(14):3313–3321

    Article  CAS  Google Scholar 

  • Detriche S, Nagy J, Mekhalif Z, Delhalle J (2009) Surface state of carbon nanotubes and Hansen solubility parameters. J Nanosci Nanotechnol 9(10):6015–6025

    Article  CAS  Google Scholar 

  • Du F-P, Ye E-Z, Yang W, Shen T-H, Tang C-Y, Xie X-L et al (2015) Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites. Compos Part B 68:170–175

    Article  CAS  Google Scholar 

  • Ferreira FV, Franceschi W, Menezes BRC, Brito FS, Lozano K, Coutinho AR et al (2017) Dodecylamine functionalization of carbon nanotubes to improve dispersion, thermal and mechanical properties of polyethylene based nanocomposites. Appl Surf Sci 410:267–277

    Article  CAS  Google Scholar 

  • Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16(2):024802

    Article  Google Scholar 

  • Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N et al (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074

    Article  CAS  Google Scholar 

  • Garrido M, Volland MK, Münich PW, Rodríguez-Pérez L, Calbo J, Ortí E et al (2020) Mono- and tripodal porphyrins: investigation on the influence of the number of pyrene anchors in carbon nanotube and graphene hybrids. J Am Chem Soc 142(4):1895–1903

    Article  CAS  Google Scholar 

  • Gelles T, Lawson S, Rownaghi AA, Rezaei F (2020) Recent advances in development of amine functionalized adsorbents for CO2 capture. Adsorption 26(1):5–50

    Article  CAS  Google Scholar 

  • Girei SA, Al-Juhani AA, Mezghani K, De S, Atieh MA (2012) Effect of phenol functionalized carbon nanotube on mechanical, dynamic mechanical, and thermal properties of isotactic polypropylene nanocomposites. Polym Eng Sci 3(52):525–531

    Google Scholar 

  • Goldschmidt A, Streitberger H-J (2018) BASF handbook on basics of coating technology. Vincentz Network, Hannover

    Google Scholar 

  • Graham AP, Duesberg GS, Hoenlein W, Kreupl F, Liebau M, Martin R et al (2005) How do carbon nanotubes fit into the semiconductor roadmap? Appl Phys A Mater Sci Process 80(6):1141–1151

    Article  CAS  Google Scholar 

  • Hu J, Shi J, Li S, Qin Y, Guo Z-X, Song Y et al (2005) Efficient method to functionalize carbon nanotubes with thiol groups and fabricate gold nanocomposites. Chem Phys Lett 401(4):352–356

    Article  CAS  Google Scholar 

  • Hunger K, Schmidt MU, Heber T, Reisinger F, Wannemacher S (2019) Industrial organic pigments production, crystal structures, properties, applications. John Wiley & Sons, Weinheim

    Google Scholar 

  • Ismaili H, Lagugné-Labarthet F, Workentin MS (2011) Covalently assembled gold nanoparticle-carbon nanotube hybrids via a photoinitiated carbene addition reaction. Chem Mater 23(6):1519–1525

    Article  CAS  Google Scholar 

  • Izadi H, Gerlich AP (2012) Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon 50(12):4744–4749

    Article  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413

    Article  CAS  Google Scholar 

  • Kelly KF, Chiang IW, Mickelson ET, Hauge RH, Margrave JL, Wang X et al (1999) Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study. Chem Phys Lett 313(3):445–450

    Article  CAS  Google Scholar 

  • Khabashesku VN, Kuznetsov OV, Pulikkathara MX (2011) Carbon nanotubes: fluorinated derivatives. In: Scott RA (ed) Encyclopedia of inorganic and bioinorganic chemistry. Springer, Berlin Heidelberg

    Google Scholar 

  • Kharissova OV, Kharisov BI (2017a) Solubilization and dispersion of carbon nanotubes. Springer, Cham

    Book  Google Scholar 

  • Kharissova OV, Kharisov BI (2017b) Special studies and characterization of CNT dispersions. Solubilization and dispersion of carbon nanotubes. Springer, Cham, pp 173–221

    Book  Google Scholar 

  • Kholghi Eshkalak S, Chinnappan A, Jayathilaka WADM, Khatibzadeh M, Kowsari E, Ramakrishna S (2017) A review on inkjet printing of CNT composites for smart applications. Appl Mater Today 9:372–386

    Article  Google Scholar 

  • Kim KK, Yoon S-M, Choi J-Y, Lee J, Kim B-K, Kim JM et al (2007) Design of dispersants for the dispersion of carbon nanotubes in an organic solvent. Adv Funct Mater 17(11):1775–1783

    Article  CAS  Google Scholar 

  • Kolosov AE (2016) Preparation of reactoplastic nanomodified polymer composites. Part 4. Effectiveness of modifying epoxide oligomers with carbon nanotubes (review). Chem Pet Eng 52(7):573–577

    Article  CAS  Google Scholar 

  • Koval’chuk AA, Shevchenko VG, Shchegolikhin AN, Nedorezova PM, Klyamkina AN, Aladyshev AM (2008) Effect of carbon nanotube functionalization on the structural and mechanical properties of polypropylene/MWCNT composites. Macromolecules 41(20):7536–7542

    Article  Google Scholar 

  • Ma J, Larsen RM (2013) Comparative study on dispersion and interfacial properties of single walled carbon nanotube/polymer composites using hansen solubility parameters. ACS Appl Mater Interfaces 5(4):1287–1293

    Article  CAS  Google Scholar 

  • Ma J, Larsen RM (2014) Effect of concentration and surface modification of single walled carbon nanotubes on mechanical properties of epoxy composites. Fiber Polym 15(10):2169–2174

    Article  CAS  Google Scholar 

  • Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A: Appl Sci Manuf 41(10):1345–1367

    Article  Google Scholar 

  • Malikov EY, Muradov MB, Akperov OH, Eyvazova GM, Puskás R, Madarász D et al (2014) Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites. Physica E 61:129–134

    Article  CAS  Google Scholar 

  • Mallakpour S, Azimi F (2019) Using sonochemistry for the production of poly(vinyl alcohol)/MWCNT–vitamin B1 nanocomposites: exploration of morphology, thermal and mechanical properties. New J Chem 43(19):7502–7510

    Article  CAS  Google Scholar 

  • Mallakpour S, Soltanian S (2016) Vitamin C functionalized multi-walled carbon nanotubes and its reinforcement on poly(ester-imide) nanocomposites containing L-isoleucine amino acid moiety. Compos Interfaces 23(3):209–221

    Article  CAS  Google Scholar 

  • Manasrah AD, Laoui T, Zaidi SJ, Atieh MA (2017) Effect of PEG functionalized carbon nanotubes on the enhancement of thermal and physical properties of nanofluids. Exp Thermal Fluid Sci 84:231–241

    Article  CAS  Google Scholar 

  • Mensah B, Kim HG, Lee J-H, Arepalli S, Nah C (2015) Carbon nanotube-reinforced elastomeric nanocomposites: a review. Int J Smart Nano Mater 6(4):211–238

    Article  CAS  Google Scholar 

  • Mickelson ET, Huffman CB, Rinzler AG, Smalley RE, Hauge RH, Margrave JL (1998) Fluorination of single-wall carbon nanotubes. Chem Phys Lett 296(1):188–194

    Article  CAS  Google Scholar 

  • Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J et al (1999) Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B 103(21):4318–4322

    Article  CAS  Google Scholar 

  • Mohammad Raei Nayini M, Bastani S, Ranjbar Z (2014) Synthesis and characterization of functionalized carbon nanotubes with different wetting behaviors and their influence on the wetting properties of carbon nanotubes/polymethylmethacrylate coatings. Prog Org Coat 77(6):1007–1014

    Article  CAS  Google Scholar 

  • Morales JO, Watts AB, McConville JT (2016) Mechanical particle-size reduction techniques. Formulating poorly water soluble drugs. New York, US, Springer, pp 165–213

    Google Scholar 

  • Naqvi STR, Rasheed T, Hussain D, Najam ul Haq M, Majeed S, Shafi S et al (2020) Modification strategies for improving the solubility/dispersion of carbon nanotubes. J Mol Liq 297:111919

    Article  CAS  Google Scholar 

  • Nazari B, Ranjbar Z, Moghaddam AR, Momen G, Ranjbar B (2019) Dispersing graphene in aqueous media: investigating the effect of different surfactants. Colloids Surf Physicochem Eng Aspects 582:123870

    Article  CAS  Google Scholar 

  • Patel JB, Yang X, Mendis CL, Fan Z (2017) Melt conditioning of light metals by application of high shear for improved microstructure and defect control. JOM 69(6):1071–1076

    Article  CAS  Google Scholar 

  • Rahman MJ, Mieno T (2016) Safer production of water dispersible carbon nanotubes and nanotube/cotton composite materials. In: Carbon nanotubes-current progress of their polymer composites. InTech Rijeka, London, UK

    Google Scholar 

  • Roy S, Petrova RS, Mitra S (2018) Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnol Rev 7(6):475–485

    Article  CAS  Google Scholar 

  • Selvin Thomas P, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M et al (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47(7):3344–3349

    Article  CAS  Google Scholar 

  • Sgobba V, Aminur Rahman GM, Ehli C, Guldi DM (2007) Chapter 11 covalent and non-covalent approaches toward multifunctional carbon nanotube materials. fullerenes: principles and applications. The Royal Society of Chemistry, Cambridge, UK pp 329–379

    Google Scholar 

  • Shang S, Gan L, Yuen, M. C.-w. (2013) Improvement of carbon nanotubes dispersion by chitosan salt and its application in silicone rubber. Compos Sci Technol 86:129–134

    Article  CAS  Google Scholar 

  • Shojaei TR, Azhari S (2018) Chapter 16 – fabrication, functionalization, and dispersion of carbon nanotubes. In: Barhoum A, Makhlouf ASH (eds) Emerging applications of nanoparticles and architecture nanostructures. Elsevier, Amsterdam, NL pp 501–531

    Google Scholar 

  • Singh NP, Gupta VK, Singh AP (2019) Graphene and carbon nanotube reinforced epoxy nanocomposites: a review. Polymer 180:121724

    Article  CAS  Google Scholar 

  • Skwarecki AS, Nowak MG, Milewska MJ (2020) Synthetic strategies in construction of organic macromolecular carrier–drug conjugates. Org Biomol Chem 18(30):5764–5783

    Article  CAS  Google Scholar 

  • Soares BG (2018) Ionic liquid: a smart approach for developing conducting polymer composites: a review. J Mol Liq 262:8–18

    Article  CAS  Google Scholar 

  • Star A, Steuerman DW, Heath JR, Stoddart JF (2002) Starched carbon nanotubes. Angew Chem 114(14):2618–2622

    Article  Google Scholar 

  • Stevens JL, Huang AY, Peng H, Chiang IW, Khabashesku VN, Margrave JL (2003) Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett 3(3):331–336

    Article  CAS  Google Scholar 

  • Suzuki S (2013) Syntheses and applications of carbon nanotubes and their composites. BoD–Books on Demand, London, UK

    Google Scholar 

  • Tkalya EE, Ghislandi M, de With G, Koning CE (2012) The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Curr Opin Colloid Interface Sci 17(4):225–232

    Article  CAS  Google Scholar 

  • Tripathi AC, Saraf SA, Saraf SK (2015) Carbon nanotropes: a contemporary paradigm in drug delivery. Materials 8(6):3068–3100

    Article  CAS  Google Scholar 

  • Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460(7252):250–253

    Article  CAS  Google Scholar 

  • Tunckol M, Durand J, Serp P (2012) Carbon nanomaterial–ionic liquid hybrids. Carbon 50(12):4303–4334

    Article  CAS  Google Scholar 

  • Wang J, Chu H, Li Y (2008) Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2(12):2540–2546

    Article  CAS  Google Scholar 

  • Yan L, Chang PR, Zheng P (2011) Preparation and characterization of starch-grafted multiwall carbon nanotube composites. Carbohydr Polym 84(4):1378–1383

    Article  CAS  Google Scholar 

  • Yokoyama K, Sato Y, Yamamoto M, Nishida T, Itoh T, Motomiya K et al (2021) Functionalization of primary amine groups to single-walled carbon nanotubes by reacting fluorinated SWCNTs with ammonia gas at a low temperature. Carbon 172:360–371

    Article  CAS  Google Scholar 

  • Yoon H, Yamashita M, Ata S, Futaba DN, Yamada T, Hata K (2014) Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci Rep 4(1):3907

    Article  Google Scholar 

  • Zha J, Batisse N, Claves D, Dubois M, Frezet L, Kharitonov AP et al (2016) Superhydrophocity via gas-phase monomers grafting onto carbon nanotubes. Prog Surf Sci 91(2):57–71

    Article  CAS  Google Scholar 

  • Zhang L, Kiny VU, Peng H, Zhu J, Lobo RFM, Margrave JL et al (2004) Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chem Mater 16(11):2055–2061

    Article  CAS  Google Scholar 

  • Zhao J, Wang F, Zhang X, Liang L, Yang X, Li Q et al (2018) Vibration damping of carbon nanotube assembly materials. Adv Eng Mater 20(3):1700647

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Ranjbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nayini, M.M.R., Ranjbar, Z. (2021). Carbon Nanotubes: Dispersion Challenge and How to Overcome It. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics