Skip to main content
Log in

Chemical and structural characterization of carbon nanotube surfaces

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To utilize carbon nanotubes (CNTs) in various commercial and scientific applications, the graphene sheets that comprise CNT surfaces are often modified to tailor properties, such as dispersion. In this article, we provide a critical review of the techniques used to explore the chemical and structural characteristics of CNTs modified by covalent surface modification strategies that involve the direct incorporation of specific elements and inorganic or organic functional groups into the graphene sidewalls. Using examples from the literature, we discuss not only the popular techniques such as TEM, XPS, IR, and Raman spectroscopy but also more specialized techniques such as chemical derivatization, Boehm titrations, EELS, NEXAFS, TPD, and TGA. The chemical or structural information provided by each technique discussed, as well as their strengths and limitations. Particular emphasis is placed on XPS and the application of chemical derivatization in conjunction with XPS to quantify functional groups on CNT surfaces in situations where spectral deconvolution of XPS lineshapes is ambiguous.

Of the more common techniques, Raman, TEM, & XPS are often used in the analysis of surface modified carbon nanotubes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Masciangioli T, Zhang W-X (2003) Environmental technologies at the nanoscale. nanotechnology could substantially enhance environmental quality and substainability through pollution prevention, treatment, and remediation. Environ Sci Technol 102A–108A

  2. He X, Kitipornchai SCMW, Leiw KM (2005) Modeling of van der Waals force for infinitesimal deformation of multi-walled carbon nanotubes treated as cylindrical shells. Int J Solids Struct 42:6032–6047

    CAS  Google Scholar 

  3. Terrones M, Hsu WK, Kroto HW, Walton DRM (1999) Topics in current chemistry. In Nanotubes: a revolution in materials science and electronics, vol. 199. Springer Berlin / Heidelberg

  4. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  CAS  Google Scholar 

  5. Gibson JM, Ebbensen TW, Treacy MMJ (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680

    Article  Google Scholar 

  6. Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP (2005) Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer 46:439–444

    Article  CAS  Google Scholar 

  7. Ouellette J (2002/2003). Building the nanofuture with carbon tubes http://www.aip.org/tip/INPHFA/vol-8/iss-6/p18.html. The Industrial Physicist

  8. Chandra B, Bhattacharjee J, Purewal M, Son Y-W, Wu Y, Huang M, Yan H, Heinz TF, Kim P, Neaton JB, Hone J (2009) Molecular-scale quantum dots from carbon nanotube heterojunctions. Nano Lett 9:1544–1548

    Article  CAS  Google Scholar 

  9. Short P, McCoy M (2007) Companies invest in nanotubes. Chem Eng News 85:20

    Google Scholar 

  10. Cheng J, Fernando KAS, Veca LM, Sun Y-P, Lamond AI, Lam YW, Cheng SH (2008) Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2:2085–2094

    Article  CAS  Google Scholar 

  11. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev 2:29–37

    CAS  Google Scholar 

  12. Brundle CR, Evans CA, Wilson S (1992) Encyclopedia of materials characterization. Butterworth-Heinemann, Stoneham

    Google Scholar 

  13. Vickerman JC (1997) Surface analysis: the principal techniques, 1st edn. John Wiley & Sons, Chichester

    Google Scholar 

  14. Povstugar VI, Mikhailova SS, Shakov AA (2000) Chemical derivatization techniques in the determination of functional groups by X-ray photoelectron spectroscopy. J Anal Chem 55:455–467

    Article  Google Scholar 

  15. Xing Y, Dementev N, Borguet E (2007) Chemical labeling for quantitative characterization of surface chemistry. Curr Opin Solid State Mater Sci 11:86–91

    Article  CAS  Google Scholar 

  16. Boehm HP, Diehl E, Heck W, Sappok R (1964) Surface oxides of carbon. Angew Chem Int Edit 3:669–677

    Article  Google Scholar 

  17. Speyer RF (1994) Thermal analysis of materials. Marcel Dekker, New York

    Google Scholar 

  18. Kirkland AI, Hutchison JL (eds) (2007) Nanocharacterisation. The Royal Society of Chemistry, Cambridge

  19. Cho H-H, Wepasnick KA, Smith B, Bangash F, Fairbrother H, Ball W (2009). Sorption of aqueous Zn[II] and Cd[II] by multi-wall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir ASAP

  20. Zschoerper NP, Katzenmaier V, Vohrer U, Haupt M, Oehr C, Hirth T (2009) Analytical investigation of the composition of plasma-induced functional groups on carbon nanotube sheets. Carbon 47:2174–2185

    Article  CAS  Google Scholar 

  21. Dementev N, Feng X, Borguet E (2009) Fluorescence labeling and quantification of oxygen-containing functionalities on the surface of single-walled carbon nanotubes. Langmuir 25:7573–7577

    Article  CAS  Google Scholar 

  22. Čech J, Kalbáč M, Curran SA, Zhang D, Dettlaff-Weglikowska U, Dunsch L, Yang S, Roth S (2007) HRTEM and EELS investigation of functionalized carbon nanotubes. Physica E 37:109–114

    Article  Google Scholar 

  23. Smith BW, Luzzi DE (2001) Electron irradiation effects in single wall carbon nanotubes. J Appl Phys 90:3509–3515

    Article  CAS  Google Scholar 

  24. Rao AM, Chen J, Richter E, Schlecht U, Eklund PC, Haddon RC, Venkateswaran UD, Kwon Y-K, Tománek D (2001) Effect of van der Walls interactions on the Raman modes in single walled carbon nanotubes. Phys Rev Lett 86:3895–3898

    Article  CAS  Google Scholar 

  25. Itkis ME, Perea DE, Jung R, Niyogi S, Haddon R (2005) Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J Am Chem Soc 127:3429–3448

    Article  Google Scholar 

  26. Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Lett 402:422–427

    Article  CAS  Google Scholar 

  27. Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38:728–736

    Article  CAS  Google Scholar 

  28. Yang D-Q, Rochette J-F, Sacher E (2005) Functionalization of multiwalled carbon nanotubes by mild aqueous sonication. J Phys Chem B 109:7788–7794

    Article  CAS  Google Scholar 

  29. Smith B, Wepasnick K, Schrote KE, Cho H-H, Ball WP, Fairbrother DH (2009). Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure—property relationship. Langmuir 25:9767–9776

    Article  CAS  Google Scholar 

  30. Pulikkathara MX, Kuznetsov OV, Khabashesku VN (2008) Sidewall covalent functionalization of single wall carbon nanotubes through reactions of fluoronanotubes with urea, guanidine, and thiourea. Chem Mater 20:2685–2695

    Article  CAS  Google Scholar 

  31. Chetty R, Xia W, Kundu S, Bron M, Reinecke T, Schuhmann W, Muhler M (2009) Effect of reduction temperature on the preparation and characterization of Pt-Ru nanoparticles on multiwalled carbon nanotubes. Langmuir 25:3853–3860

    Article  CAS  Google Scholar 

  32. Li M, Boggs M, Beebe TP, Huang CP (2008) Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound. Carbon 46:466–475

    Article  CAS  Google Scholar 

  33. Hou PX, Bai S, Yang QH, Liu C, Cheng HM (2002) Multi-step purification of carbon nanotubes. Carbon 40:81–85

    Article  CAS  Google Scholar 

  34. Cho H-H, Smith BA, Wnuk JD, Fairbrother DH, Ball WP (2008) Influence of surface oxides on the adsorption of naphthalene on to multiwalled carbon nanotubes. Environ Sci Technol 42:2899–2905

    Article  CAS  Google Scholar 

  35. Smith B, Wepasnick K, Schrote KE, Bertele AR, Ball WP, O’Melia C, Fairbrother DH (2009) Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes. Environ Sci Technol 43:819–825

    Article  CAS  Google Scholar 

  36. Xia W, Wang Y, Bergsträβer R, Kundu S, Muhler M (2007) Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Appl Surf Sci 254:247–250

    Article  CAS  Google Scholar 

  37. Bergeret C, Cousseau J, Fernandez V, Mevellec J-Y, Lefrant S (2008) Spectroscopic evidence of carbon nanotubes’ metallic character loss induced by covalent functionalization via nitric acid purification. J Phys Chem C 112:16411–16416

    Article  CAS  Google Scholar 

  38. Hung NT, Anoshkin IV, Dementjev AP, Katorov DV, Rakov EG (2008) Functionalization and solubilization of thin multiwalled carbon nanotubes. Inorg Mater 44:219–223

    CAS  Google Scholar 

  39. Wang H, Zhou A, Peng F, Yu H, Yang J (2007) Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J Colloid Interface Sci 316:277–283

    Article  CAS  Google Scholar 

  40. Langley LA, Villanueva DE, Fairbrother DH (2006) Quantification of surface oxides on carbonaceous materials. Chem Mater 18:169–178

    Article  CAS  Google Scholar 

  41. Masheter AT, Xiao L, Wildgoose GG, Crossley A, Jones JH, Compton RG (2007) Voltammetric and X-ray photoelectron spectroscopic fingerprinting of carboxylic acid groups on the surface of carbon nanotubes via derivatisation with arylnitro labels. J Mater Chem 17:3515–3524

    Article  CAS  Google Scholar 

  42. Kuznetsova A, Popova I, Yates JJT, Bronikowski MJ, Huffman CB, Liu J, Smalley RE, Hwu HH, Chen JG (2001) Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J Am Chem Soc 123:10699–10744

    Article  CAS  Google Scholar 

  43. Li Y-H, Wang S, Luan Z, Ding J, Xu C, Wu D (2003) Adsorption of Cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  CAS  Google Scholar 

  44. Marshall MW, Popa-Nita S, Shapter JG (2006) Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon 44:1137–1141

    Article  CAS  Google Scholar 

  45. Li X, Niu J, Zhang J, Li H, Liu Z (2003) Labeling the defects of single-walled carbon nanotubes using titanium dioxide nanoparticles. J Phys Chem B 107:2453–2458

    Article  CAS  Google Scholar 

  46. Morant C, Andrey J, Prieto P, Mendiola D, Sanz JM, Elizalde E (2006) XPS characterization of nitrogen-doped carbon nanotubes. Phys Stat Sol 6:1069–1075

    Article  Google Scholar 

  47. Droppa JR, Ribeiro CTM, Zanatta AR, dos Santos MC, Alvarez F (2004) Comprehensive spectroscopic study of nitrogenated carbon nanotubes. Phys Rev B 69:045405-045401–045405-045409

    Article  Google Scholar 

  48. Arrigo R, Hävecker M, Schlögl R, Su DS (2008) Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem Commun 4891–4893

  49. Xu F, Minniti M, Barone P, Sindona A, Bonanno A, Oliva A (2008) Nitrogen doping of single walled carbon nanotubes by low energy N+/2 ion implantation. Carbon 46:1489–1496

    Article  CAS  Google Scholar 

  50. Wang Y-Q, Sherwood PMA (2004) Studies of carbon nanotubes and fluorinated nanotubes by X-ray and ultraviolet photoelectron spectroscopy. Chem Mater 16:5427–5436

    Article  CAS  Google Scholar 

  51. Marcoux PR, Schreiber J, Batail P, Lefrant S, Renouard J, Jacob G, Albertini D, Mevellec J-Y (2002) A spectroscopic study of the fluorination and defluorination reactions on single-walled carbon nanotubes. Phys Chem Chem Phys 4:2278–2285

    Article  CAS  Google Scholar 

  52. An KH, Heo JG, Jeon KG, Bae DJ, Jo C, Yang CW, Park C-Y, Lee YH (2002) X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett 80:4235–4237

    Article  CAS  Google Scholar 

  53. Shulga YM, Tien T-C, Huang C-C, Lo S-C, Muradyan VE, Polyakova NV, Ling Y-C, Loutfy RO, Moravsky AP (2007) XPS study of fluorinated carbon multi-walled nanotubes. J Electron Spectrosc Relat Phenom 160:22–28

    Article  CAS  Google Scholar 

  54. Dossot M, Gardien F, Mamane V, Fort Y, Liu J, Vigolo B, Humbert B, McRae E (2007) Optical parameter to reveal the interplay between covalent functionalization and the state of aggregation of single-walled carbon nanotubes. J Phys Chem 111:12199–12206

    CAS  Google Scholar 

  55. McPhail MR, Sells JA, He Z, Chusuei CC (2009) Charging nanowalls: adjusting the carbon nanotube isoelectric point via surface functionalization. J Phys Chem C 113:14102–14109

    Article  CAS  Google Scholar 

  56. Gromov A, Dittmer S, Svensson J, Nerushev OA, Perez-Garcia SA, Licea-Jiménez L, Rychwalski R, Campbell EEB (2005) Covalent amino-functionalisation of single-wall carbon nanotubes. J Mater Chem 15:3334–3339

    Article  CAS  Google Scholar 

  57. Kocharova N, Leiro J, Lukkari J, Heinonen M, Skála T, Sutara F, Skoda M, Vondráček M (2008) Self-assembled carbon nanotubes on gold: polarization-modulated infrared reflection-absorption spectroscopy, high-resolution X-ray photoemission spectroscopy, and near-edge x-ray absorption fine structure spectroscopy study. Langmuir 24:3235–3243

    Article  CAS  Google Scholar 

  58. Nakamura T, Ohana T, Ishihara M, Hasegawa M, Koga Y (2007) Chemical modification of single-walled carbon nanotubes with sulfur-containing functionalities. Diamond Relat Mater 16:1091–1094

    Article  CAS  Google Scholar 

  59. Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96:23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Science Foundation (grant # BES0731147), the Environmental Protection Agency (grant # RD-83385701-0), and the Institute for Nanobiotechnology (INBT) at Johns Hopkins University. The authors would also like to acknowledge the Material Science Department at JHU for use of the surface analysis laboratory. Billy Smith also acknowledges support from the ARCS foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Howard Fairbrother.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wepasnick, K.A., Smith, B.A., Bitter, J.L. et al. Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396, 1003–1014 (2010). https://doi.org/10.1007/s00216-009-3332-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3332-5

Keywords

Navigation