Skip to main content
Log in

Predictive value of surveillance cultures for bacteremia caused by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales among patients with hematological diseases

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Due to the increasing prevalence of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, empirical therapies with cefepime or piperacillin/tazobactam for hematology patients with febrile neutropenia have become ineffective. Carbapenems should be administered as soon as possible in such patients with ESBL bacteremia. If the surveillance culture results are consistent with the blood culture findings, the time to adequate treatment initiation can be shortened.

Methods

All consecutive patients with Enterobacterales bacteraemia who were admitted from January 2013 to December 2018 at the hematology wards were enrolled in this study. Surveillance rectal swab and blood culture results were compared.

Results

In total, 67 patients with Enterobacterales bacteremia underwent surveillance culture prior to the onset of infection. Regarding the presence or absence of ESBL-producing Enterobacterales, 64 (95.5%) patients had surveillance results concordant with blood culture results. The positive predictive value of surveillance culture for bacteremia caused by ESBL-producing Enterobacterales was 95.0%. Moreover, the negative predictive value of surveillance culture for bacteremia caused by non-ESBL-producing Enterobacterales was 95.7%.

Conclusion

The concordance rate between the surveillance rectal swab and blood cultures was highly acceptable. Surveillance rectal swab cultures are useful for identifying patients at high risk for ESBL bacteremia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Anonymized data are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Viscoli C, Bruzzi P, Castagnola E, Boni L, Calandra T, Gaya H, et al. Factors associated with bacteraemia in febrile, granulocytopenic cancer patients. The International Antimicrobial Therapy Cooperative Group (IATCG) of the European Organization for Research and Treatment of Cancer (EORTC). Eur J Cancer. 1994. https://doi.org/10.1016/0959-8049(94)90412-x.

    Article  PubMed  Google Scholar 

  2. Blennow O, Ljungman P, Sparrelid E, Mattsson J, Remberger M. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl Infect Dis. 2014. https://doi.org/10.1111/tid.12175.

    Article  PubMed  Google Scholar 

  3. Song Y, Himmel B, Ohrmalm L, Gyarmati P. The microbiota in hematologic malignancies. Curr Treat Options Oncol. 2020. https://doi.org/10.1007/s11864-019-0693-7.

    Article  PubMed  Google Scholar 

  4. Ji J, Klaus J, Burnham JP, Michelson A, McEvoy CA, Kollef MH, et al. Bloodstream infections and delayed antibiotic coverage are associated with negative hospital outcomes in hematopoietic stem cell transplant recipients. Chest. 2020. https://doi.org/10.1016/j.chest.2020.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tamma PD, Han JH, Rock C, Harris AD, Lautenbach E, Hsu AJ, et al. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin Infect Dis. 2015. https://doi.org/10.1093/cid/civ003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kang CI, Chung DR, Ko KS, Peck KR, Song JH. Risk factors for infection and treatment outcome of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. Ann Hematol. 2012. https://doi.org/10.1007/s00277-011-1247-7.

    Article  PubMed  Google Scholar 

  7. Scheich S, Weber S, Reinheimer C, Wichelhaus TA, Hogardt M, Kempf VAJ, et al. Bloodstream infections with gram-negative organisms and the impact of multidrug resistance in patients with hematological malignancies. Ann Hematol. 2018. https://doi.org/10.1007/s00277-018-3423-5.

    Article  PubMed  Google Scholar 

  8. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2011. https://doi.org/10.1093/cid/ciq147.

    Article  PubMed  Google Scholar 

  9. Benanti GE, Brown ART, Shigle TL, Tarrand JJ, Bhatti MM, McDaneld PM, et al. Carbapenem versus Cefepime or Piperacillin-Tazobactam for empiric treatment of bacteremia due to extended-spectrum-beta-lactamase-producing Escherichia coli in patients with hematologic malignancy. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/AAC.01813-18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cohen MJ, Block C, Levin PD, Schwartz C, Gross I, Weiss Y, et al. Institutional control measures to curtail the epidemic spread of carbapenem-resistant Klebsiella pneumoniae: a 4-year perspective. Infect Control Hosp Epidemiol. 2011. https://doi.org/10.1086/660358.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sehulster L, Chinn RY. Guidelines for environmental infection control in health-care facilities. recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep. 2003;52:1–42.

    PubMed  Google Scholar 

  12. Kola A, Holst M, Chaberny IF, Ziesing S, Suerbaum S, Gastmeier P. Surveillance of extended-spectrum beta-lactamase-producing bacteria and routine use of contact isolation: experience from a three-year period. J Hosp Infect. 2007. https://doi.org/10.1016/j.jhin.2007.01.006.

    Article  PubMed  Google Scholar 

  13. Baba H, Nimmo GR, Allworth AM, Boots RJ, Hayashi Y, Lipman J, et al. The role of surveillance cultures in the prediction of susceptibility patterns of Gram-negative bacilli in the intensive care unit. Eur J Clin Microbiol Infect Dis. 2011. https://doi.org/10.1007/s10096-010-1146-1.

    Article  PubMed  Google Scholar 

  14. Papadomichelakis E, Kontopidou F, Antoniadou A, Poulakou G, Koratzanis E, Kopterides P, et al. Screening for resistant gram-negative microorganisms to guide empiric therapy of subsequent infection. Intensive Care Med. 2008. https://doi.org/10.1007/s00134-008-1247-9.

    Article  PubMed  Google Scholar 

  15. Reddy P, Malczynski M, Obias A, Reiner S, Jin N, Huang J, et al. Screening for extended-spectrum beta-lactamase-producing Enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clin Infect Dis. 2007. https://doi.org/10.1086/521260.

    Article  PubMed  Google Scholar 

  16. Blot S, Depuydt P, Vogelaers D, Decruyenaere J, De Waele J, Hoste E, et al. Colonization status and appropriate antibiotic therapy for nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in an intensive care unit. Infect Control Hosp Epidemiol. 2005. https://doi.org/10.1086/502575.

    Article  PubMed  Google Scholar 

  17. Donskey CJ. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis. 2004. https://doi.org/10.1086/422002.

    Article  PubMed  Google Scholar 

  18. Averbuch D, Orasch C, Cordonnier C, Livermore DM, Mikulska M, Viscoli C, et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European conference on infections in leukemia. Haematologica. 2013. https://doi.org/10.3324/haematol.2013.091025.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bassetti M, Righi E. Multidrug-resistant bacteria: what is the threat? Hematol Am Soc Hematol Educ Program. 2013. https://doi.org/10.1182/asheducation-2013.1.428.

    Article  Google Scholar 

  20. Magarifuchi H, Hamada Y, Oho M, Kusaba K, Urakami T, Aoki Y. Clinical utility of direct application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry and rapid disk diffusion test in presumptive antimicrobial therapy for bacteremia. J Infect Chemother. 2018. https://doi.org/10.1016/j.jiac.2018.07.014.

    Article  PubMed  Google Scholar 

  21. Trecarichi EM, Cauda R, Tumbarello M. Detecting risk and predicting patient mortality in patients with extended-spectrum beta-lactamase-producing Enterobacteriaceae bloodstream infections. Future Microbiol. 2012. https://doi.org/10.2217/fmb.12.100.

    Article  PubMed  Google Scholar 

  22. Hattori T, Nishiyama H, Ikegami S, Minoshima M, Kato H, Yuasa N. Clinical evaluation of FAPlus/FNPlus bottles compared with the combination of SA/SN and FA/FN bottles in the BacT/Alert blood culture system. J Med Invest. 2020. https://doi.org/10.2152/jmi.67.90.

    Article  PubMed  Google Scholar 

  23. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013. https://doi.org/10.1038/bmt.2012.244.

    Article  PubMed  PubMed Central  Google Scholar 

  24. JANIS Open Report. https://janis.mhlw.go.jp/english/report/index.html (2021). Accessed 16 November 2021.

  25. Jans B, Schoevaerdts D, Huang TD, Berhin C, Latour K, Bogaerts P, et al. Epidemiology of multidrug-resistant microorganisms among nursing home residents in Belgium. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0064908.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Schaik W. The human gut resistome. Philos Trans R Soc Lond B Biol Sci. 2015. https://doi.org/10.1098/rstb.2014.0087.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bellm LA, Epstein JB, Rose-Ped A, Martin P, Fuchs HJ. Patient reports of complications of bone marrow transplantation. Support Care Cancer. 2000. https://doi.org/10.1007/s005209900095.

    Article  PubMed  Google Scholar 

  28. Keefe DM, Schubert MM, Elting LS, Sonis ST, Epstein JB, Raber-Durlacher JE, et al. Updated clinical practice guidelines for the prevention and treatment of mucositis. Cancer. 2007. https://doi.org/10.1002/cncr.22484.

    Article  PubMed  Google Scholar 

  29. Nesher L, Rolston KV. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection. 2014. https://doi.org/10.1007/s15010-013-0525-9.

    Article  PubMed  Google Scholar 

  30. Wingard JR, Hsu J, Hiemenz JW. Hematopoietic stem cell transplantation: an overview of infection risks and epidemiology. Infect Dis Clin North Am. 2010. https://doi.org/10.1016/j.idc.2010.01.010.

    Article  PubMed  Google Scholar 

  31. Yan ST, Sun LC, Jia HB, Gao W, Yang JP, Zhang GQ. Procalcitonin levels in bloodstream infections caused by different sources and species of bacteria. Am J Emerg Med. 2017. https://doi.org/10.1016/j.ajem.2016.12.017.

    Article  PubMed  Google Scholar 

  32. Soga Y, Maeda Y, Ishimaru F, Tanimoto M, Maeda H, Nishimura F, et al. Bacterial substitution of coagulase-negative staphylococci for streptococci on the oral mucosa after hematopoietic cell transplantation. Support Care Cancer. 2011. https://doi.org/10.1007/s00520-010-0923-9.

    Article  PubMed  Google Scholar 

  33. Saito R, Koyano S, Nagai R, Okamura N, Moriya K, Koike K. Evaluation of a chromogenic agar medium for the detection of extended-spectrum β-lactamase-producing Enterobacteriaceae. Lett Appl Microbiol. 2010. https://doi.org/10.1111/j.1472-765x.2010.02945.x.

    Article  PubMed  Google Scholar 

  34. Japanese Society of Medical Oncology. Practical Guideline for Febrile Neutropenia (FN). 2nd ed. Tokyo, Japan: Nankodo Co Ltd; 2017.

    Google Scholar 

  35. Trecarichi EM, Pagano L, Candoni A, Pastore D, Cattaneo C, Fanci R, et al. Current epidemiology and antimicrobial resistance data for bacterial bloodstream infections in patients with hematologic malignancies: an Italian multicentre prospective survey. Clin Microbiol Infect. 2015. https://doi.org/10.1016/j.cmi.2014.11.022.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by Japanese Red Cross, Nagoya 1st Hospital Research Grant (NFRCH 20–0023).

Author information

Authors and Affiliations

Authors

Contributions

TH designed the study, collected data, performed the statistical analysis, and drafted the original manuscript. TG and MO interpreted data and revised the manuscript. YO and KM supervised the study. All authors have approved the final manuscript.

Corresponding author

Correspondence to Takuya Hattori.

Ethics declarations

Conflict of interest

We declare no conflict of interest relevant to this study.

Ethics approval

This study was approved by the Ethical Committee of Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital (2019-099).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattori, T., Goto, T., Osaki, M. et al. Predictive value of surveillance cultures for bacteremia caused by extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales among patients with hematological diseases. Infection 50, 753–759 (2022). https://doi.org/10.1007/s15010-021-01753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-021-01753-z

Keywords

Navigation