Skip to main content
Log in

Three-dimensional printing of antibiotics-loaded poly-ε-caprolactone/poly(lactic-co-glycolic acid) scaffolds for treatment of chronic osteomyelitis

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Osteomyelitis, an infection and inflammation of bone marrow, often progresses to chronic stage because of delay in diagnosis and treatment. Once it becomes chronic, intravenous antibiotics therapy is no longer effective as swollen surrounding tissue interrupts blood flow into the infected tissue. In severe cases, debridement of the necrotic tissue becomes necessary to prevent further infection. In this study, for the first time, we produced three-dimensional (3D) printed antibiotics-loaded biodegradable poly-e-caprolactone/poly(lactic-co-glycolic acid) scaffold for treatment of chronic osteomyelitis. Subsequent bone regeneration in debrided site was also observed with the customized scaffolds fabricated using 3D printing. Tobramycin, one of the most widely used antibiotics in orthopedic surgery, was chosen due to its thermostable nature compliant to the heat-based fabrication conditions. In in vitro tests, antibacterial and anti-inflammatory effects and release profile of tobramycin from the scaffold were evaluated to verify the potential of our scaffold as a drug delivery system. In addition, in vivo efficacy of the developed drug loaded scaffolds for treatment of chronic osteomyelitis was also examined in a rat model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lew DP, Waldvogel FA. Osteomyelitis. Lancet 2004;364:369–379.

    Article  CAS  PubMed  Google Scholar 

  2. Concia E, Prandini N, Massari L, Ghisellini F, Consoli V, Menichetti F, et al. Osteomyelitis: clinical update for practical guidelines. Nucl Med Commun 2006;27:645–660.

    Article  PubMed  Google Scholar 

  3. Patzakis MJ, Zalavras CG. Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. J Am Acad Orthop Surg 2005;13:417–427.

    PubMed  Google Scholar 

  4. Jia WT, Zhang X, Luo SH, Liu X, Huang WH, Rahaman MN, et al. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater 2010;6:812–819.

    Article  CAS  PubMed  Google Scholar 

  5. Hansen T, Kunkel M, Weber A, James Kirkpatrick C. Osteonecrosis of the jaws in patients treated with bisphosphonates-histomorphologic analysis in comparison with infected osteoradionecrosis. J Oral Pathol Med 2006;35:155–160.

    Article  PubMed  Google Scholar 

  6. Peters MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymer matrices. J Biomed Mater Res 2002;60:668–678.

    Article  CAS  PubMed  Google Scholar 

  7. Parsons B, Strauss E. Surgical management of chronic osteomyelitis. Am J Surg 2004;188(1A Suppl):57–66.

    Article  PubMed  Google Scholar 

  8. Campoccia D, Montanaro L, Speziale P, Arciola CR. Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 2010; 31:6363–6377.

    Article  CAS  PubMed  Google Scholar 

  9. Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials 2003;24:1829–1831.

  10. Neut D, van de Belt H, Stokroos I, van Horn JR, van der Mei HC, Busscher HJ. Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery. J Antimicrob Chemother 2001; 47:885–891.

    Article  CAS  PubMed  Google Scholar 

  11. Belkoff SM, Molloy S. Temperature measurement during polymerization of polymethyl methacrylate cement used for vertebroplasty. Spine 2003;28:1555–1559.

    PubMed  Google Scholar 

  12. Peltola MJ, Vallittu PK, Vuorinen V, Aho AA, Puntala A, Aitasalo KM. Novel composite implant in craniofacial bone reconstruction. Eur Arch Otorhinolaryngol 2012;269:623–628.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Koort JK, Mäkinen TJ, Suokas E, Veiranto M, Jalava J, Knuuti J, et al. Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother 2005;49:1502–1508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Kluin OS, van der Mei HC, Busscher HJ, Neut D. Biodegradable vs nonbiodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin Drug Deliv 2013;10:341–351.

    Article  CAS  PubMed  Google Scholar 

  15. McKee MD, Li-Bland EA, Wild LM, Schemitsch EH. A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma 2010;24:483–490.

    Article  PubMed  Google Scholar 

  16. Miyai T, Ito A, Tamazawa G, Matsuno T, Sogo Y, Nakamura C, et al. Antibiotic-loaded poly-epsilon-caprolactone and porous beta-tricalcium phosphate composite for treating osteomyelitis. Biomaterials 2008;29: 350–358.

    Article  CAS  PubMed  Google Scholar 

  17. Tamazawa G, Ito A, Miyai T, Matsuno T, Kitahara K, Sogo Y, et al. Gatifloxacine-loaded PLGA and ß-tricalcium phosphate composite for treating osteomyelitis. Dent Mater J 2011;30:264–273.

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Han D, Dong JS, Shen GX, Chai G, Yu ZY, et al. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. Int J Med Robot 2010;6:66–72.

    Article  PubMed  Google Scholar 

  19. Lee JY, Choi B, Wu B, Lee M. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication 2013;5:045003.

    Article  PubMed  Google Scholar 

  20. Seol YJ, Kang TY, Cho DW. Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 2012; 8:1730–1735.

    Article  CAS  Google Scholar 

  21. Jung JW, Kang HW, Kang TY, Park JH, Park J, Cho DW. Projection image-generation algorithm for fabrication of a complex structure using projection-based microstereolithography. Int J Precis Eng Manuf 2012; 13:445–449.

    Article  CAS  Google Scholar 

  22. Lee JW, Kang KS, Lee SH, Kim JY, Lee BK, Cho DW. Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 2011;32:744–752.

    Article  CAS  PubMed  Google Scholar 

  23. Lee JW, Ahn G, Kim JY, Cho DW. Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J Mater Sci Mater Med 2010;21:3195–3205.

    Article  CAS  PubMed  Google Scholar 

  24. Shim JH, Lee JS, Kim JY. Fabrication of solid freeform fabrication based 3D scaffold and its in-vitro characteristic evaluation for bone tissue engineering. Tissue Eng Regen Med 2012;9:A16–A23.

    Google Scholar 

  25. Sa MW, Kim JY. Comparison analysis and fabrication of hollow shaft scaffolds using polymer deposition system. Tissue Eng Regen Med 2015; 12:46–52.

    Article  Google Scholar 

  26. Shim JH, Kim JY, Park M, Park J, Cho DW. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 2011;3:034102.

    Article  PubMed  Google Scholar 

  27. Kim JY, Yoon JJ, Park EK, Kim SY, Cho DW. Original Paper: the fabrication of rapid prototype based 3D PCL and PLGA scaffolds using precision deposition system. Tissue Eng Regen Med 2008;5:506–511.

    Google Scholar 

  28. Ryan JA. Colorimetric determination of gentamicin, kanamycin, tobramycin, and amikacin aminoglycosides with 2,4-dinitrofluorobenzene. J Pharm Sci 1984;73:1301–1302.

    Article  CAS  PubMed  Google Scholar 

  29. Shim JH, Lee JS, Kim JY, Cho DW. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 2012;22:085014.

    Article  Google Scholar 

  30. Pezone I, Leone S. Role of Trimethoprim-sulfamethoxazole for treatment of acute osteomyelitis in children. Pediatr Infect Dis J 2012;31:660–661; author reply 661.

    Article  PubMed  Google Scholar 

  31. Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 2009;90:906–919.

    Article  PubMed  Google Scholar 

  32. Walter E, Dreher D, Kok M, Thiele L, Kiama SG, Gehr P, et al. Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J Control Release 2001;76:149–168.

    Article  CAS  PubMed  Google Scholar 

  33. Prior S, Gamazo C, Irache JM, Merkle HP, Gander B. Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections. Int J Pharm 2000;196:115–125.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang W, Tang W, Geng Q, Xu X. Triptolide suppresses lipopolysaccharide-induced activity of toll-like receptor 4 in mouse macrophage cell line RAW 264.7. Med Chem Res 2012;21:1347–1352.

    Article  CAS  Google Scholar 

  35. Reis J, Hassan F, Guan XQ, Shen J, Monaco JJ, Papasian CJ, et al. The immunoproteasomes regulate LPS-induced TRIF/TRAM signaling pathway in murine macrophages. Cell Biochem Biophys 2011;60:119–126.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Peroglio M, Gremillard L, Eglin D, Lezuo P, Alini M, Chevalier J. Evaluation of a new press-fit in situ setting composite porous scaffold for cancellous bone repair: towards a “surgeon-friendly” bone filler? Acta Biomater 2010;6:3808–3812.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hae-Ryong Song or Dong-Woo Cho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, JH., Kim, MJ., Park, J.Y. et al. Three-dimensional printing of antibiotics-loaded poly-ε-caprolactone/poly(lactic-co-glycolic acid) scaffolds for treatment of chronic osteomyelitis. Tissue Eng Regen Med 12, 283–293 (2015). https://doi.org/10.1007/s13770-015-0014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0014-6

Keywords

Navigation