Skip to main content

Advertisement

Log in

The Immunoproteasomes Regulate LPS-Induced TRIF/TRAM Signaling Pathway in Murine Macrophages

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We have proposed the novel concept that the macrophage ubiquitin–proteasome pathway functions as a key regulator of Lipopolysaccharide (LPS)-induced inflammation signaling. These findings suggest that proteasome-associated protease subunits X, Y, and Z are replaced by LMP subunits after LPS treatment of RAW 264.7 cells. The objective here was to determine the contribution of selective LMP proteasomal subunits to LPS-induced nitric oxide (NO) and TNF-α production in primary murine macrophages. Accordingly, thioglycollate-elicited macrophages from LMP7, LMP2, LMP10 (MECL-1), and LMP7/MECL-1 double knockout mice were stimulated in vitro with LPS, and were found to generate markedly reduced NO levels compared to wild-type (WT) mice, whereas TNF-α levels responses were essentially unaltered relative to wild-type responses. The recent studies suggest that the TRIF/TRAM pathway is defective in LMP knockouts which may explain why iNOS/NO are not robustly induced in LPS-treated macrophages from knockouts. Treating these macrophages with IFN-γ and LPS, however, reverses this defect, leading to robust NO induction. TNF-α is induced by LPS in the LMP knockout macrophages because IκB and IRAK are degraded normally via the MyD88 pathway. Collectively, these findings strongly support the concept that LMP7/MECL-1 proteasomes subunits actively function to regulate LPS-induced NO production by affecting the TRIF/TRAM pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qureshi, N., Perera, P.-Y., Splitter, G., Morrison, D. C., & Vogel, S. N. (2003). The Proteasome as a LPS-binding protein in macrophages. Toxic lipopolysaccharide activates the proteasome complex. Journal of Immunology, 171, 1515–1525.

    CAS  Google Scholar 

  2. Qureshi, N., Vogel, S. N., Van Way, C., III, Papasian, C. J., Qureshi, A. A., & Morrison, D. C. (2000). The proteasome. A central regulator of Inflammation and macrophage function. Immunologic Research, 31, 243–260.

    Article  Google Scholar 

  3. Shen, J., Reis, J., Morrison, D. C., Papasian, C., Sreekumar, R., Kolbert, C., et al. (2006). Key Inflammatory signaling pathways are regulated by the proteasome. Shock, 25, 472–484.

    Article  PubMed  CAS  Google Scholar 

  4. Shen, J., Gao, J. J., Zhang, G., Tan, X., Morrison, D. C., Papasian, C., et al. (2006). Proteasome inhibitor, lactacystin blocks CpG DNA- and peptidoglycan induced inflammatory genes, cytokines and mitogen-activated protein kinases in macrophages. Shock, 25, 594–599.

    Article  PubMed  CAS  Google Scholar 

  5. Hirsch, C., & Pleogh, H. L. (2000). Intracellular targeting of the proteasome. Trends in Cell Biology, 10, 268–272.

    Article  PubMed  CAS  Google Scholar 

  6. Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H., & Russell, S. W. (1993). Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing: Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. Journal of Biological Chemistry, 268, 1908–1913.

    PubMed  CAS  Google Scholar 

  7. Groettrup, M., Khan, S., Schwarz, K., & Schmidtke, G. (2001). Interferon-γ inducible exchanges of 20S proteasome active subunits: Why? Biochimie, 83, 367–372.

    Article  PubMed  CAS  Google Scholar 

  8. Gaczynska, M., Rock, K. L., Spies, T., & Goldberg, A. L. (1994). Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Journal of Biological Chemistry, 91, 9213–9217.

    CAS  Google Scholar 

  9. Reis, J., Guan, X., Kisselev, A., Papasian, C. J., Qureshi, A. A., Morrison, D. C., Van Way III, C. W., Vogel, S. N., & Qureshi, N. (2010). LPS-induced formation of immunoproteasomes: TNF and nitric oxide regulated by altered composition of proteasomes-active sites. Cell Biochemistry and Biophysics. doi:10.1007/s12013-011-9182-8.

  10. Caudill, C. M., Jayapu, K., Elenich, L., Monaco, J. J., Colbert, R. A., & Griffin, T. A. (2006). T cells lacking immunoproteasome subunits MECL-1 and LMP7 hyperproliferate in response to polyclonal mitogens. Journal of Immunology, 176, 4075–4082.

    CAS  Google Scholar 

  11. Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11S REG (PA28) and class I antigen presentation. Biochemical Journal, 345, 1–15.

    Article  PubMed  CAS  Google Scholar 

  12. Elenich, L. A., Nandi, D., Kent, A. E., McCuskey, T. S., Cruz, M., Lyer, M. N., et al. (1999). The complete primary structure of mouse 20S proteasomes. Immunogenetics, 49, 835–842.

    Article  PubMed  CAS  Google Scholar 

  13. Pang, K. C., Sanders, M. T., Monaco, J. J., Doherty, P. C., Turner, S. J., & Chen, W. (2006). Immunoproteasome subunit deficiencies impact differentially on two immunodominant influenza virus-specific CD8+ T cell responses. Journal of Immunology, 177, 7680–7688.

    CAS  Google Scholar 

  14. Hensley, S. E., Zanker, D., Dolan, B. P., David, A., Hickman, H. D., Embry, A. C., et al. (2010). Unexpected role for the immunoproteasome subunit LMP2 in antiviral humoral and innate immune responses. Journal of Immunology, 184, 4115–4122.

    Article  CAS  Google Scholar 

  15. Seifert, U., Bialy, L. P., Ebstein, F., Bech-Otschir, D., Voight, A., Schroter, F., et al. (2010). Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell, 142, 613–624.

    Article  PubMed  CAS  Google Scholar 

  16. Qureshi, N., Takayama, K., Mascagni, P., Honovich, J., Wong, R., & Cotter, R. J. (1988). Complete structural determination of lipopolysaccharides obtained from deep rough mutant of Escherichia coli: Purification by high performance liquid chromatography and direct analysis by plasma desorption mass spectrometry. Journal of Biological Chemistry, 263, 11971–11976.

    PubMed  CAS  Google Scholar 

  17. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89, 271–277.

    Article  PubMed  CAS  Google Scholar 

  18. Reis, J., Xiaoyu, T., Yang, R., Rockwell, C. E., Papasian, C. J., Vogel, S. N., et al. (2008). A combination of proteasome inhibitors and antibiotics prevents lethality in a septic shock model. Innate Immunity, 14, 319–329.

    Article  PubMed  CAS  Google Scholar 

  19. O’Neill, L. A., Bryant, J. C. E., & Doyle, S. I. (2009). Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacological Reviews, 61, 177–197.

    Article  PubMed  Google Scholar 

  20. Keating, S. E., & Bowie, A. G. (2009). Role of Non-degradative ubiquitination in interleukin and toll-like receptor signaling. Journal of Biological Chemistry, 284, 8217–8221.

    Google Scholar 

  21. Wertz, I. E., & Dixit, V. M. (2010). Signaling to NF-κB: Regulation by ubiquitination. Cold Spring Harbor Perspectives in Biology, 2, a003350.

    Article  PubMed  Google Scholar 

  22. Poltorak, A. X., Smirnova, H. I., Liu, M. Y., Huffel, C. V., Du, X., Birdwell, D., et al. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science, 282, 2085–2088.

    Article  PubMed  CAS  Google Scholar 

  23. Vogel, S. N., Fitzgerald, K. A., & Fenton, M. J. (2003). TLRs: Differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression. Molecular Interventions, 3, 466–477.

    Article  PubMed  CAS  Google Scholar 

  24. Tseng, P.-H., Matsuzawa, A., Zhang, W., Mino, T., Vignali, D. A. A., & Karin, M. (2010). Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nature Immunology, 11, 70–75.

    Article  PubMed  CAS  Google Scholar 

  25. Kutuzova, G., Albrecht, R., Erickson, C., & Qureshi, N. (2001). Diphosphoryl lipid A from Rhodobacter sphaeroides blocks the binding and internalization of toxic lipopolysaccharide in RAW 264.7 cells. Journal of Immunology, 167, 482–489.

    CAS  Google Scholar 

  26. Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S., & Medzhitov, R. (2008). Tram couples endocytosis of toll-like receptor 4 to the induction of interferon-β. Nature Immunology, 9, 361–368.

    Article  PubMed  CAS  Google Scholar 

  27. Gao, J. J., Filla, M. B., Fultz, M. J., Vogel, S. N., Russell, S. W., & Murphy, W. J. (1998). Autocrine/paracrine IFN-αβ mediates the lipopolysaccharide-induced activation of transcription factor STAT1α in mouse macrophages: Pivotal role of STAT1α in induction of the inducible nitric oxide synthase gene. Journal of Immunology, 161, 4803–4810.

    CAS  Google Scholar 

  28. Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G.-Y., Vallabhapurapu, S., et al. (2009). Cancer Cell, 15, 103–113.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported in part by NIH grants GM-50870 (NQ), and AI-18797 (SNV). We thank Drs. Alfred L. Goldberg and Alexei Kisselev for helpful suggestions. Jing Shen is now with the WA Dental group, Bellevue, Washington.

Disclosures

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilofer Qureshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, J., Hassan, F., Guan, X.Q. et al. The Immunoproteasomes Regulate LPS-Induced TRIF/TRAM Signaling Pathway in Murine Macrophages. Cell Biochem Biophys 60, 119–126 (2011). https://doi.org/10.1007/s12013-011-9183-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9183-7

Keywords

Navigation