Skip to main content
Log in

Responses of Spodoptera frugiperda and Trichogramma pretiosum to Rice Plants Exposed to Herbivory and Phytohormones

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Damage caused by herbivorous insects and application of phytohormones can activate signaling pathways, which result in greater production of secondary metabolites, increasing plant defenses. This study aimed to evaluate the induced direct resistance (local and systemic) of rice plants caused by herbivorous insects and exogenous application of methyl jasmonate (MJ) and salicylic acid (SA) in the development of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Moreover, indirect defenses through chemotactic responses of Trichogramma pretiosum (Riley) (Hymenoptera: Trichogrammatidae) submitted to the same treatments were investigated. Direct defense was evaluated by measuring weight gain of fall armyworm larvae fed with leaves of plants previously exposed to herbivores or treated with MJ (2 and 5 mM), SA (8 and 16 mM), or control. Indirect defense was verified by chemotactic behavior of wasps in two-choice olfactometer tests to plants exposed to herbivores and evaluated after 24, 48, and 72 h in comparison with undamaged ones, as well as plants treated with the same phytohormones contrasted with the control. The gain of weight was reduced in immature developmental stage of S. frugiperda fed in leaves previously damaged by fall armyworm and in newly formed leaves after damage to the plants, comparing with control. Leaves treated with MJ (2 mM and 5 mM) and SA (8 mM) were less eaten than those not treated. Parasitoids triggered a positive chemotactic behavior in rice plants that had been sprayed with same concentrations. This study showed that rice plants can activate direct and indirect defenses through an exogenous application of phytohormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Agrawal AA (2005) Future directions in the study of induced plant responses to herbivory. J Chem Ecol 115:97–105

    Google Scholar 

  • Baker JE, Bowling CC (1967) Rearing of two lepidopterous pests of rice on a common artificial diet. Ann Entomol Soc Am 60:1215–1216

    Article  Google Scholar 

  • Bayram A, Tonga A (2018) Cis-Jasmone treatments affect pests and beneficial insects of wheat (Triticum aestivum L.): the influence of doses and plant growth stages. Crop Prot 105:70–79

    Article  CAS  Google Scholar 

  • Beserra EB, Dias CTDS, Parra JRP (2002) Distribution and natural parasitism of Spodoptera Frugiperda (Lepidoptera: Noctuidae) eggs at different phenological stages of corn. Florida Entomol 85:588–593

    Article  Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm Helicoverpa armigera and beet armyworm Spodoptera exigua. J Chem Ecol 35:28–38

    Article  CAS  PubMed  Google Scholar 

  • Boughton AJ, Hoover K, Felton GW (2006) Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomol Exp Appl 120:175–188

    Article  CAS  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, Van Loon JJA, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60:2575–2587

    Article  PubMed  PubMed Central  Google Scholar 

  • Counce PA, Keisling TC, Mitchell AJ (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Sci 40:436–443

    Article  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborne HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • De Sá LAN, Parra JRP, De Sá LAN (1994) Natural parasitism of Spodoptera frugiperda and Helicoverpa zea (Lepidoptera: Noctuidae) eggs in corn by Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) in Brazil. Florida Entomol 77:185

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistence. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Fatouros NE, Dicke M, Mumm R, Meiners T, Hilker M (2008) Foraging behavior of egg parasitoids exploiting chemical information. Behav Ecol 19:677–689

    Article  Google Scholar 

  • Ferreira E (1999) Pragas e seu controle. In: Santos AB, Stone LF, Vieira NRA (eds) A cultura do arroz no Brasil. Embrapa Arroz e Feijão, Santo Antônio de Goiás, pp 197–261

    Google Scholar 

  • Figueiredo M, Cruz I, da Silva RB, Foster JE (2015) Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%. Agron Sustain Dev 35:1175–1183

    Article  Google Scholar 

  • Fonseca JR (2006) Recursos genéticos. In: Santos AB, Stone LF, Vieira NRA (eds) A cultura do arroz no Brasil. Embrapa Arroz e Feijão, Santo Antônio de Goiás, pp 257–288

    Google Scholar 

  • Freitas TFS (2017) Ecologia química de pentatomídeos em Oryza sativa (Poaceae): implicações no manejo com feromônio sexual sintético e nas interações tritróficas mediadas por fitormônios. 2017. 116 f. Tese (Doutorado em Fitotecnia) - Programa de Pós-Graduação em Fitotecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre

  • Freitas TFS, Stout MJ, Sant’Ana J (2018) Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Manag Sci. https://doi.org/10.1002/ps.5174

  • Girling RD, Stewart-Jones A, Dherbecourt J, Staley JT, Wright DT, Poppy GM (2011) Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proc R Soc B Biol Sci 278:2646–2653

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gordy JW, Leonard BR, Blouin D, Davis JA, Stout MJ (2015) Comparative effectiveness of potential elicitors of plant resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in four crop plants. PLoS One 10:1–14

    Article  CAS  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Tremblay E, Pennacchio F (1999) Induction and systemic release of herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi. J Chem Ecol 25:1247–1261

    Article  CAS  Google Scholar 

  • Hamm JC, Stout MJ, Riggio RM (2010) Herbivore- and elicitor-induced resistance in rice to the rice water weevil (Lissorhoptrus oryzophilus Kuschel) in the laboratory and field. J Chem Ecol 36:192–199

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1999) Classes and functions of secondary products. In: Walton NJ, Brown DE (eds) Chemicals from plants: perspectives on secondary plant products. Imperial College Press, London, pp 1–25

    Google Scholar 

  • Houseweart MW, Jennings DT, Welty C, Southard SG (1983) Progeny production by Trichogramma minutum (Hymenoptera: Trichogrammatidae) utilizing eggs for Choristoneura fumiferana (Lepidoptera: Tortricidae) and Sitotroga cerealella (Lepidoptera: Gelechiidae). Can Entomol 115:1245–1252

    Article  Google Scholar 

  • Kanno H, Satoh M, Kimura T, Fujita Y (2005) Some aspects of induced resistance to rice blast fungus, Magnaporthe grisea, in rice plant infested by white-backed planthopper, Sogatella furcifera. Appl Entomol Zool 40:91–97

    Article  Google Scholar 

  • Kanno H, Hasegawa M, Osamu K (2012) Accumulation of salicylic acid, jasmonic acid and phytoalexins in rice, Oryza sativa, infested by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47:27–34

    Article  CAS  Google Scholar 

  • Kawazu K, Mochizuki A, Sato Y, Sugeno W, Murata M, Seo S, Mitsuhara I (2012) Different expression profiles of jasmonic acid and salicylic acid inducible genes in the tomato plant against herbivores with various feeding modes. Arthropod Plant Interact 6:221–230

    Article  Google Scholar 

  • Ko K, Liu Y, Hou M, Babendreier D, Zhang F, Song K (2014) Evaluation for potential Trichogramma (Hymenoptera: Trichogrammatidae) strains for control of the striped stem borer (Lepidoptera: Crambidae) in the greater mekong subregion. J Econ Entomol 107:955–963

    Article  Google Scholar 

  • Lou YG, Ma B, Cheng JA (2005) Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata lugens. J Chem Ecol 31:2357–2372

    Article  CAS  PubMed  Google Scholar 

  • Martinazzo T (2007) Liberação de Trichogramma pretiosum para controle biológico de Spodoptera frugiperda na cultura do milho. Rev Bras Agroecol 2:1657–1660

    Google Scholar 

  • Moraes MCB, Laumann RA, Pareja M, Sereno FTPS, Michereff MFF, Birkett MA, Pickett JA, Borges M (2009) Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated by treatment with cis-jasmone. Entomol Exp Appl 131:178–188

    Article  CAS  Google Scholar 

  • Moreira X, Sampedro L, Zas R (2009) Defensive responses of Pinus pinaster seedlings to exogenous application of methyl jasmonate: concentration effect and systemic response. Environ Exp Bot 67:94–100

    Article  CAS  Google Scholar 

  • Parra JRP (1997) Técnicas de criação de Anagasta kuehniella, hospedeiro alternativo para a produção de Trichogramma. In: Parra JRP, Zucchi RA (eds) Trichogramma e o controle biológico aplicado. Editora FEALQ, Piracicaba, pp 121–150

    Google Scholar 

  • Poelman EH, Oduor AMO, Broekgaarden C, Hordijk CA, Jansen JJ, Van Loon JJA, Van Dam NM, Vet LEM, Dicke M (2009) Field parasitism rates of caterpillars on Brassica oleracea plants are reliably predicted by differential attraction of Cotesia parasitoids. Funct Ecol 23:951–962

    Article  Google Scholar 

  • Rodriguez-Saona CRB, Isaacs R (2012) Manipulation of natural enemies in agroecosystems: habitat and semiochemicals for sustainable insect pest control. In: Larramendy ML, Soloneski S (eds) Integrated pest management and pest control - current and future tactics. InTech, Rijeka, pp 89–126

    Google Scholar 

  • Sanches PA, Santos F, Peñaflor MFGV, Bento JMS (2017) Direct and indirect resistance of sugarcane to Diatraea saccharalis induced by jasmonic acid. Bull Entomol Res 107:828–838

    Article  CAS  PubMed  Google Scholar 

  • Schweiger R, Heise AM, Persicke M, Müller C (2014) Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. Plant Cell Environ 37:1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Nathan S, Kalaivani K, Choi MY, Paik CH (2009) Effects of jasmonic acid-induced resistance in rice on the plant brownhopper, Nilaparvata lugens Stål (Homoptera: Delphacidae). Pestic Biochem Physiol 95:77–84

    Article  CAS  Google Scholar 

  • Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI (2011) Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agric For Entomol 13:45–57

    Article  Google Scholar 

  • Stout MJ, Riggio MR, Yang Y (2009) Direct induced resistance in Oryza sativa to Spodoptera frugiperda. Environ Entomol 38:1174–1181

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8:1–4

    Article  CAS  Google Scholar 

  • Tamiru A, Khan ZR (2017) Volatile semiochemical mediated plant defense in cereals: a novel strategy for crop protection. Agronomy 7:58

    Article  CAS  Google Scholar 

  • Tan CW, Lo JC, Yadav J, Ravuiwasa KT, Hwang SY (2011) Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura Fab. performance. J Asia Pac Entomol 14:263–269

    Article  CAS  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (1996) Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Peiffer M, De Moraes CM, Felton GW (2014) Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa Zea. Planta 239:577–589

    Article  CAS  PubMed  Google Scholar 

  • Tremacoldi CR (2009) Proteases e inibidores de proteases na defesa de plantas contra pragas. Embrapa Amazônia Oriental, Belém, p 44

    Google Scholar 

  • Williams L, Rodriguez-Saona C, Del Conte SCC (2017) Methyl jasmonate induction of cotton: a field test of the “attract and reward” strategy of conservation biological control. AoB Plants 9:1–15

    Article  CAS  Google Scholar 

  • Ye M, Luo SM, Xie JF, Li YF, Xu T, Liu Y, Song YY, Salzman KZ, Zeng RS (2012) Silencing COI1 in rice increases susceptibility to chewing insects and impairs inducible defense. PLoS One 7:1–11

    Google Scholar 

  • Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 55:491–503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like thank the Coordinating Committee on the Improvement of Higher Education Personnel (CAPES) of Brazil for providing the scholarship to the first author and the National Council for Scientific and Technological Development for the fellowships awarded to the second author (CNPq 306474/2015-8).

Author information

Authors and Affiliations

Authors

Contributions

FBL and JS conceived and designed the study; FBL performed the experiments and analyzed the data; FBL and JS wrote the manuscript.

Corresponding author

Correspondence to F B Lopes.

Additional information

Edited by Leandro P. Ribeiro – EPAGRI

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, F.B., Sant’Ana, J. Responses of Spodoptera frugiperda and Trichogramma pretiosum to Rice Plants Exposed to Herbivory and Phytohormones. Neotrop Entomol 48, 381–390 (2019). https://doi.org/10.1007/s13744-018-0661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-018-0661-0

Keywords

Navigation