Skip to main content
Log in

Photocatalytic degradation of methylene blue dye by TiO2 supported on magnetic core shell (Si@Fe) surface

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Magnetic photocatalysts were obtained with different TiO2 (Ti) contents supported on the core–shell structure, SiO2@δ-FeOOH, obtaining the the main photocatalysts 30, 50 and 80 Ti/Si@Fe. The characterization performed by DSC and TGA showed that the feroxyhyte undergoes dehydroxylation between 120 and 190 °C and indicated the formation of Fe2O3. The results obtained by XRD confirmed the conversion from δ-FeOOH to γ-Fe2O3 and α-Fe2O3 during the heat treatment performed to support TiO2 P25 in the SiO2@δ-FeOOH composite. The formation of silica on δ-FeOOH was confirmed by ATR analysis and the core–shell structure by TEM images. The efficiency in the separation stage of the photocatalysts from the aqueous medium was evaluated by sedimentation kinetics in the presence of a magnetic field. The results showed that the prepared materials can be quickly and simply separated due to their magnetic property. The efficiency of the magnetic photocatalysts to decolorize methylene blue dye in the presence of UV radiation ranged from 73 to 96% in 120 min of reaction, while the efficiency of the reactions carried out in sunlight ranged from 91 to 97% in just 60 min. These results show that Ti/Si@Fe photocatalysts can be prepared in a simple way, showing high photocatalytic efficiency being easily recovered and reused in other reactions, which generates cost savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, Mater. Sci. Semicond. Process. 42, 2–14 (2016). https://doi.org/10.1016/j.mssp.2015.07.052

    Article  CAS  Google Scholar 

  2. E. Grabowska, Appl. Catal. B 186, 97–126 (2016). https://doi.org/10.1016/j.apcatb.2015.12.035

    Article  CAS  Google Scholar 

  3. D. Papoulis, Appl. Clay Sci. 168, 164–174 (2019). https://doi.org/10.1016/j.clay.2018.11.009

    Article  CAS  Google Scholar 

  4. V. Yargeau, C. Metcalfe, Bull. Environ. Cont. Toxicol. 98(2), 147–148 (2017). https://doi.org/10.1007/s00128-016-2021-2

    Article  CAS  Google Scholar 

  5. M. Behpour, P. Shirazi, M. Rahbar, React. Kinet. Mech. Catal. (2019). https://doi.org/10.1007/s11144-019-01581-1

    Article  Google Scholar 

  6. J. Feltrin, S. Júnior, M.N.A. De Noni, A.M. Bernardin, D. Hotza et al., Ceramica 60, 1–9 (2014). https://doi.org/10.1590/S0366-69132014000100002

    Article  CAS  Google Scholar 

  7. C.S. Lugo-Vega, B. Serrano-Rosales, H. de Lasa, Chem. Eng. Sci. 156, 77–88 (2016). https://doi.org/10.1016/j.ces.2016.08.038

    Article  CAS  Google Scholar 

  8. Y. Du, W. Ma, P. Liu, B. Zou, J. Ma, J. Hazard. Mater. 308, 58–66 (2016). https://doi.org/10.1016/j.jhazmat.2016.01.035

    Article  CAS  PubMed  Google Scholar 

  9. S. Weon, J. Kim, W. Choi, Appl. Catal. B 220, 1–8 (2018). https://doi.org/10.1016/j.apcatb.2017.08.036

    Article  CAS  Google Scholar 

  10. S.A. Phaltane, S. Vanalakar, T. Bhat, P. Patil, S. Sartale, L. Kadam, J. Mater. Sci. Mater. 28, 8186–8191 (2017). https://doi.org/10.1007/s10854-017-6527-0

    Article  CAS  Google Scholar 

  11. X. Wang, Y. Sun, L. Yang, Q. Shang, D. Wang, T. Guo, Y. Guo, Sci. Total Environ. 656, 1010–1020 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.419

    Article  CAS  PubMed  Google Scholar 

  12. A. Kerrami, L. Mahtout, F. Bensouici, M. Bououdina, S. Rabhi, E. Sakher, H. Belkacemi, Mater. Res. Express. 6(8), 0850f5 (2019). https://doi.org/10.1088/2053-1591/ab2677

    Article  CAS  Google Scholar 

  13. Y. Zhang, W. Jiang, Y. Ren, B. Wang, Y. Liu, Q. Hua, J. Tang, Korean J. Chem. Eng. 37(3), 536–545 (2020). https://doi.org/10.1007/s11814-019-0448-y

    Article  CAS  Google Scholar 

  14. X.N. Ren, Z.Y. Hu, J. Jin, L. Wu, C. Wang, J. Liu, F. Liu, M. Wu, Y. Li, G. Van Tendeloo, B.-L. Su, ACS Appl. Mater. Int. 9, 29687–29698 (2017). https://doi.org/10.1021/acsami.7b07226

    Article  CAS  Google Scholar 

  15. J. Wang, L. Peng, F. Cao, B. Su, H. Shi, Inorg. Nano-metal Chem. 47(3), 396–400 (2017). https://doi.org/10.1080/15533174.2016.1186061

    Article  CAS  Google Scholar 

  16. Y. Yu, W. Wen, X.-Y. Qian, J.-B. Liu, J.-M. Wu, Sci. Rep. 7 (2017). https://doi.org/10.1038/srep41253

  17. P.P. Zhou, Z.G. Le, Y. Xie, J. Fang, J.W. Xu, J. Alloys Compd. 692, 170–177 (2017). https://doi.org/10.1016/j.jallcom.2016.09.039

    Article  CAS  Google Scholar 

  18. J. Wang, S. Sun, H. Ding, W. Chen, Y. Liang, Appl. Surf. Sci. 493, 146–156 (2019). https://doi.org/10.1016/j.apsusc.2019.07.005

    Article  CAS  Google Scholar 

  19. L. Yang, Y. Zhao, Y. Liu, W. Zhang, J. Sol-Gel Sci. Tech. 93(2), 371–379 (2020). https://doi.org/10.1007/s10971-019-05153-6

    Article  CAS  Google Scholar 

  20. A.C. Martins, A.L. Cazettaa, O. Pezotia, J.R.B. Souza, T. Zhang, E.J. Pilau, T. Asefa, V.C. Almeid, Ceram. Int. 43, 4411–4418 (2017). https://doi.org/10.1016/j.ceramint.2016.12.088

    Article  CAS  Google Scholar 

  21. A. Majumdar, A. Pal, Clean. Technol. Environ. Policy (2019). https://doi.org/10.1007/s10098-019-01766-1

    Article  Google Scholar 

  22. L.D.O. Pereira, I.M. Sales, L.P. Zampiere, S.S. Vieira, I.R. Guimarães, F. Magalhães, Photobiol. A 382, 111907 (2019). https://doi.org/10.1016/j.jphotochem.2019.111907

    Article  CAS  Google Scholar 

  23. L. de O. Pereira, S.G. de Moura, G.C.M. Coelho, L.C.A. Oliveira, E.T. de Almeida, F. Magalhães, J. Environ. Chem. Eng. 7 (2019). https://doi.org/10.1016/j.jece.2018.102826

  24. V. Belessi, D. Lambropoulou, I. Konstantiou, R. Zboril, J. Tucek, D. Jancik, T. Albanis, D. Petridis, Appl. Catal. B: Environ. 87, 181–189 (2009). https://doi.org/10.1016/j.apcatb.2008.09.012

    Article  CAS  Google Scholar 

  25. Z. Dai, D. Li, L. Chi, Y. Li, B. Gao, N. Qiu, Q. Duan, Y. Li, Mater. Lett. 241, 239–242 (2019). https://doi.org/10.1016/j.matlet.2019.01.126

    Article  CAS  Google Scholar 

  26. G.M. Paba, R.B. Ávila, D.B. Baldiris, Global J. Environ. Sci. Manag. 7(1) (2019). https://doi.org/10.22034/GJESM.2021.01.10

  27. X. Chen, Z. Wu, D. Liu, Z. Gao, Nanoscale Res. Lett. 12 (2017). https://doi.org/10.1186/s11671-017-1904-4

  28. Y.L. Han, S.Y. Kim, T. Kim, K.H. Kim, J.W. Park, J. Clean. Prod. 250, 119494 (2020). https://doi.org/10.1016/j.jclepro.2019.119494

    Article  CAS  Google Scholar 

  29. M.E. El-Naggar, A.R. Wassel, K. Shoueir, Environ. Nanotechnol. Monit. Manag. (2021). https://doi.org/10.1016/j.enmm.2020.100425

    Article  Google Scholar 

  30. M.C. Pereira, E.M. Garcia, A.C. Silva, E. Lorençon, J.D. Ardisson, E. Murad, J.D. Fabris, T. Matencio, T.C. Ramalho, M.V.J. Rocha, J. Mater. Chem. 21, 10280 (2011). https://doi.org/10.1039/C1JM11736J

    Article  CAS  Google Scholar 

  31. Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, S.K. Fu, Colloid Surf. A 26 (2005). https://doi.org/10.1016/j.colsurfa.2005.04.009

  32. C.S. Chiou, J.L. Shie, C.Y. Chang, C.C. Liu, C.T. Chang, J. Hazard. Mater. 137, 1123–1129 (2006). https://doi.org/10.1016/j.jhazmat.2006.03.058

    Article  CAS  PubMed  Google Scholar 

  33. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (John Wiley & Sons, London, 2003)

    Book  Google Scholar 

  34. L.C.A. Oliveira, J.D. Fabris, M.C. Pereira, Quim. Nova 36, 123–130 (2013). https://doi.org/10.1590/S0100-40422013000100022

    Article  CAS  Google Scholar 

  35. P. Chawla, S.K. Sharma, A.P. Toor, Environ. Dev. Sustain. 22, 231–249 (2020). https://doi.org/10.1007/s10668-018-0194-z

    Article  Google Scholar 

  36. S. Corrêa, L.C.T. Lacerda, M. Pires, J. Nanomater. 2015 (2016). https://doi.org/10.1155/2016/2462135

  37. X. Meng, Y. Zhuang, H. Tang, C. Lu, J. Alloys Compd. 761, 15–23 (2018). https://doi.org/10.1016/j.jallcom.2018.05.150

    Article  CAS  Google Scholar 

  38. P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, J. Colloid Interface Sci. 345, 234–240 (2010). https://doi.org/10.1016/j.jcis.2010.01.087

    Article  CAS  PubMed  Google Scholar 

  39. S.G. Moura, L.C. Dauzakier, L.O. Pereira, T.C. Ramalho, L.C. Oliveira, F. Magalhães, Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-13727-7

    Article  Google Scholar 

  40. V.L. Oliveira, A.L.D. Lima, J.B. Gabriel, M.C. Pereira, T.S.F. Souza, J.D. Ardisson, A.R.T. Machado, A.C. Silva, Water Air Soil Pollut. 231, 575 (2020). https://doi.org/10.1007/s11270-020-04916-0

    Article  CAS  Google Scholar 

  41. A.S. Teja, P.Y. Koh, Prog. Cryst. Growth. Charact. Mater. 55(1–2), 22–45 (2009). https://doi.org/10.1016/j.pcrysgrow.2008.08.003

    Article  CAS  Google Scholar 

  42. J.P.S. Valente, A.B. Araújo, D.F. Bozano, P.M. Padilha, A.O. Florentino, Eclet Quim. 30, 7–12 (2005). https://doi.org/10.1590/S0100-46702005000400001

    Article  CAS  Google Scholar 

  43. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  44. L.O. Pereira, R.V. Lelo, G.C.M. Coelho, F. Magalhães, J. Iran. Chem. Soc. 16, 2281–2289 (2019). https://doi.org/10.1007/s13738-019-01694-3

    Article  CAS  Google Scholar 

  45. C. Fu, X. Liu, Y. Wang, L. Li, Z. Zhang, RSC Adv. 9, 20256–20265 (2019). https://doi.org/10.1039/C9RA04002A

    Article  CAS  Google Scholar 

  46. J.J. Liu, S.L. Zuo, L.M. Yu, Y.C. Yu, B.S. Li, P.W. Chen, Particuology 11, 728–731 (2013). https://doi.org/10.1016/j.partic.2013.01.006

    Article  CAS  Google Scholar 

  47. S.C. Pang, S.Y. Kho, S.F. Chin, J. Nanomater. (2012). https://doi.org/10.1155/2012/427310

    Article  Google Scholar 

  48. W. Wu, X.H. Xiao, S.F. Zhang, J.A. Zhou, L.X. Fan, F. Ren, C.Z. Jiang, Phys. Chem. (2011). https://doi.org/10.1186/1556-276X-6-533

    Article  Google Scholar 

  49. H. Mansour, K. Omri, R. Bargougui, S. Ammar, Appl. Phys. A 126 (2020). https://doi.org/10.1016/j.jphotochem.2019.111951

  50. E. Gholamrezapor, A. Eslami, J. Mater. Sci. Mater El., 30 (2019). https://doi.org/10.1007/s10854-019-00764-9

  51. F. Ghasemy-Piranloo, S. Dadashian, F. Bavarsiha. J. Mater. Sci. 30 (2019). https://doi.org/10.1007/s10854-019-01641-1

  52. Q.Y. Li, H. Sun, S. Sun, J.G. Liu, S.P. Cui, Z.R. Nie, J. Sol-Gel. Sci. Technol. 90(2) (2019). https://doi.org/10.1007/s10971-019-04942-3

  53. W.Q. Yang, X.W. Liu, Funct. Mater. Lett. 12, 1950006 (2019). https://doi.org/10.1142/S1793604719500061

    Article  CAS  Google Scholar 

  54. Z. Lu, J. Peng, M. Song, Y. Liu, X. Liu, P. Huo, H. Dong, S. Yuan, Z. Ma, S. Han, Chem. Eng. J. 360, 1262–1276 (2019). https://doi.org/10.1016/j.cej.2018.10.200

    Article  CAS  Google Scholar 

  55. Z.Y. Lu, G.S. Zhou, M.S. Song, D.D. Wang, P.W. Huo, W.Q. Fan, H.J. Dong, H. Tang, F. Yan, G.Z. Xing, J. Mater. Chem. A 7, 13986–14000 (2019). https://doi.org/10.1039/C9TA01863H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Federal University of Lavras, where this research was developed, the partner universities that were extremely important in the characterization analyses, the Federal University of Minas Gerais and the Federal University of Alfenas, and the development companies that supported this study with the funds offered for institutional programs, the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq) and the Foundation for Supporting Research of the State of Minas Gerais (FAPEMIG).

Funding

This study was funded by the Federal University of Lavras, where this research was developed, the partner universities that were extremely important in the characterization analyses, the Federal University of Minas Gerais and the Federal University of Alfenas, and the development companies that supported this study with the funds offered for institutional programs, the Coordination for the Improvement of Higher Education Personnel (CAPES), the National Council for Scientific and Technological Development (CNPq) and the Foundation for Supporting Research of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano Magalhães.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura, S.G., Ramalho, T.C., de Oliveira, L.C.A. et al. Photocatalytic degradation of methylene blue dye by TiO2 supported on magnetic core shell (Si@Fe) surface. J IRAN CHEM SOC 19, 921–935 (2022). https://doi.org/10.1007/s13738-021-02356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02356-z

Keywords

Navigation