Skip to main content
Log in

Sol–gel synthesis of B-TiO2(20%)/HZSM-5 composite photocatalyst for azophloxine degradation

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Photocatalyst in the supported form is more meaningful in large scale wastewater treatment than using powder material. HZSM-5 zeolite was used to support boron-doped anatase TiO2 in a sol–gel route in this work. The supported B-TiO2(20%)/HZSM-5 composite photocatalyst has strong activity on azophloxine degradation. The crystallite size of anatase TiO2 slightly increased from 6.1 to 8.4 nm when calcination temperature rose from 350 to 450 °C. The bandgap energies were around 3.3 eV for the composites calcined between 350 and 600 °C. The adsorption–desorption isotherm of the composites was the type IV isotherm for mesoporous material. The porous structure in the supported B-TiO2 layer was responsible for the variations of both BET surface area and pore volume in the composite. The maximum photocatalytic activity was obtained on the sample calcined at 450 °C. After 30 min of irradiation, 61.8% of the initial azophloxine molecules were degraded on the material. The first order reaction rate constant was 0.06168 min−1. Photocatalytic degradation efficiency was enhanced with increasing B-TiO2 concentration when the B-TiO2 dosage was below 400 mg/L.

Highlights

  • HZSM-5 zeolite was used to support boron-doped anatase TiO2 in a sol–gel route.

  • The bandgap energies were around 3.3 eV for the composites.

  • Mesopores were formed in the supported B-TiO2 layer in the composite.

  • The composite calcined at 450 °C had the maximum photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann W (1995) Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  2. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobio C 1:1–21

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  4. Kaur A, Gupta G, Ibhadon AO, Salunke DB, Sinha ASK, Kansal SK (2018) J. Environ. Chem Eng 6:3621–3630

    CAS  Google Scholar 

  5. Gupta G, Umar A, Kaur A, Sood S, Dhir A, Kansal SK (2018) Mater Res Bull 99:359–366

    Article  CAS  Google Scholar 

  6. Zhang WJ, Yang J, Li CG (2018) Mater Sci Semicond Process 85:33–39

    Article  CAS  Google Scholar 

  7. Hapeshi E, Achilleos A, Vasquez MI, Michael C, Xekoukoulotakis NP, Mantzavinos D, Kassinos D (2010) Water Res 44:1737–1746

    Article  CAS  Google Scholar 

  8. Zhang WJ, Tao YJ, Li CG (2018) J Photochem Photobio A: Chem 364:787–793

    Article  CAS  Google Scholar 

  9. Ku Y, Shiu SJ, Wu HC (2017) J Photochem Photobio A: Chem 332:299–305

    Article  CAS  Google Scholar 

  10. Bellardita M, Paola A, Megna B, Palmisano L (2017) Appl Catal B: Environ 201:150–158

    Article  CAS  Google Scholar 

  11. Zhang WJ, Bi FF, Yu Y, He HB (2013) J Mole Catal A: Chem 372:6–12

    Article  CAS  Google Scholar 

  12. Enesca A, Yamaguchi Y, Terashima C, Fujishima A, Nakata K, Duta A (2017) J Catal 350:174–181

    Article  CAS  Google Scholar 

  13. Zhang WJ, Wang KL, Yu Y, He HB (2010) Chem Eng J 163:62–67

    Article  CAS  Google Scholar 

  14. Cai JB, Wu XQ, Li SX, Zheng FY (2017) Appl Catal B: Environ 201:12–21

    Article  CAS  Google Scholar 

  15. Jo WK, Kumar S, Isaacs MA, Lee AF, Karthikeyan S (2017) Appl Catal B: Environ 201:159–168

    Article  CAS  Google Scholar 

  16. Zhang WJ, Liu YX, Pei XB, Chen XJ (2017) J Phys Chem Solids 104:45–51

    Article  CAS  Google Scholar 

  17. Du J, Li X, Li K, Gu X, Qi W, Zhang K (2016) J Alloy Compd 687:893–897

    Article  CAS  Google Scholar 

  18. Juma A, Acik IO, Oluwabi AT, Mere A, Mikli V, Danilson M, Krunks M (2016) Appl Surf Sci 387:539–545

    Article  CAS  Google Scholar 

  19. Simsek EB (2017) Appl Catal B: Environ 200:309–322

    Article  Google Scholar 

  20. Zhang W, Pei X, Yang B, He H (2014) J Adv Oxid Technol 17:66–72

    CAS  Google Scholar 

  21. Zhang W, Liu Y, Xin H (2018) Curr Nanosci 14:209–215

    Article  CAS  Google Scholar 

  22. Cao B, Li G, Li HX (2016) Appl Catal B: Environ 194:42–49

    Article  CAS  Google Scholar 

  23. Sun GH, Zhu CS, Zheng JT, Jiang B, Yin HC, Wang H, Qiu S, Yuan JJ, Wu MB, Wu WT, Xue QZ (2016) Mater Lett 166:113–115

    Article  CAS  Google Scholar 

  24. Zhang WJ, Tao YJ, Li CG (2018) Mater Res Bull 105:55–62

    Article  CAS  Google Scholar 

  25. Noorjahan M, Kumari VD, Subrahmanyam M, Boule P (2004) Appl Catal B: Environ 47:209–213

    Article  CAS  Google Scholar 

  26. Gomez S, Marchena CL, Renzini MS, Pizzio L, Pierella L (2015) Appl Catal B: Environ 162:167–173

    Article  CAS  Google Scholar 

  27. Li X, Li BS, Xu JQ, Wang Q, Pang XM, Gao XH, Zhou ZY, Piao JR (2010) Appl Clay Sci 50:81–86

    Article  CAS  Google Scholar 

  28. Tang XK, Feng QM, Liu K, Luo XP, Huang J, Li ZS (2018) Micropor Mesopor Mater 258:251–261

    Article  CAS  Google Scholar 

  29. Butler MA (1977) J Appl Phys 48:1914–1920

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation for Youths of China (No. 51504154), Research on Basic Science and Technology in Universities Supported by Education Department of Liaoning Province (No. LG201706), and Scientific Research Project of Education Department of Liaoning Province (No. LG201913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhao, Y., Liu, Y. et al. Sol–gel synthesis of B-TiO2(20%)/HZSM-5 composite photocatalyst for azophloxine degradation. J Sol-Gel Sci Technol 93, 371–379 (2020). https://doi.org/10.1007/s10971-019-05153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05153-6

Keywords

Navigation