Skip to main content
Log in

Immobilization of the Fe2O3/TiO2 photocatalyst on carbon fiber cloth for the degradation of a textile dye under visible light irradiation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

This work focuses on the photocatalytic activity of immobilized Fe2O3/TiO2 on carbon fiber cloth as a chemically stable and flexible supporting material toward degradation of textile dye [Basic Blue 41 (BB 41)] under visible light. The photocatalysts were characterized by SEM, XRD, diffuse reflectance UV–Vis, photoluminescence spectroscopy, and FTIR. The photocatalytic activities of immobilized Fe2O3/TiO2 samples with different contents of Fe2O3 (5–25 wt%) were studied for degradation of BB 41 solution (100 ml, 10 ppm) under visible light irradiation for 240 min. The optimum amount of Fe2O3 was found to be 20 wt% from experimental results that indicated 97.54% photoactivity. In order to further investigate the photocatalytic degradation, chemical oxygen demand experiments were carried out that showed the degradation of dye solution was about 84% utilizing the optimum photocatalyst. The reusability of the optimum photocatalyst was studied in 7 reaction cycles (28 h) which revealed only 13% loss of photoactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Borker P, Salker AV (2006) MSEB 133:55–60

    Article  CAS  Google Scholar 

  2. Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529

    Article  CAS  PubMed  Google Scholar 

  3. Teixeira S, Martins PM, Lanceros-Méndez S, Kühn K, Cuniberti G (2016) Surf Sci 384:497–504

    Article  CAS  Google Scholar 

  4. Zhang J, Wu Y, Xing M, Leghari SAK, Sajjad S (2010) Energy Environ Sci 3:715–726

    Article  CAS  Google Scholar 

  5. Pereira JHOS, Vilar VJP, Borges MT, González O, Esplugas S, Boaventura RAR (2011) Sol Energy 85:2732–2740

    Article  CAS  Google Scholar 

  6. Kümmerer K (2009) J Environ Manage 90:2354–2366

    Article  CAS  PubMed  Google Scholar 

  7. Savage N, Diallo MS (2005) JNR 7:331–342

    CAS  Google Scholar 

  8. Reyes C, Fernández J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD (2006) JPPA 184:141–146

    CAS  Google Scholar 

  9. Saha S, Wang JM, Pal A (2012) Sep Purif Technol 89:147–159

    Article  CAS  Google Scholar 

  10. Daghrir R, Drogui P, Robert D (2013) ACSP 52:3581–3599

    CAS  Google Scholar 

  11. Gupta SM, Tripathi M (2011) Chin Sci Bull 56:1639

    Article  CAS  Google Scholar 

  12. LiPuma G, Bono A, Krishnaiah D, Collin JG (2008) J Hazard Mater 157:209–219

    Article  CAS  Google Scholar 

  13. Thomas M, Naikoo GA, Sheikh MUD, Bano M, Khan F (2016) JPPA 327:33–43

    CAS  Google Scholar 

  14. Zayadi RA, Bakar FA (2017) JPPA 346:338–350

    CAS  Google Scholar 

  15. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catal B 125:331–349

    Article  CAS  Google Scholar 

  16. Robert D (2007) Catal Today 122:20–26

    Article  CAS  Google Scholar 

  17. Iliev V, Tomova D, Bilyarska L (2018) JPPA 351:69–77

    CAS  Google Scholar 

  18. Mishra M, Chun DM (2015) Appl Catal A 498:126–141

    Article  CAS  Google Scholar 

  19. Ambrus Z, Balázs N, Alapi T, Wittmann G, Sipos P, Dombi A, Mogyorósi K (2008) Appl Catal B 81:27–37

    Article  CAS  Google Scholar 

  20. Ahmed MA, El-Katori EE, Gharni ZH (2013) J Alloys Compd 553:19–29

    Article  CAS  Google Scholar 

  21. Kim DH, Hong HS, Kim SJ, Song JS, Lee KS (2004) J Alloys Compd 375:259–264

    Article  CAS  Google Scholar 

  22. Sun S, Ding J, Bao J, Gao C, Qi Z, Yang X, He B, Li C (2012) Appl Surf Sci 258:5031–5037

    Article  CAS  Google Scholar 

  23. Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Environ Sci Technol 35:2365–2368

    Article  CAS  PubMed  Google Scholar 

  24. Scotti R, D’Arienzo M, Morazzoni F, Bellobono IR (2009) Appl Catal B 88:323–330

    Article  CAS  Google Scholar 

  25. Freeman JJ, Gimblett FGR, Roberts RA, Sing KSW (1988) Carbon 26:7–11

    Article  CAS  Google Scholar 

  26. Fu P, Luan Y, Dai X (2004) J Mol Catal A Chem 221:81–88

    Article  CAS  Google Scholar 

  27. Shi JW, Cui HJ, Chen JW, Fu ML, Xu B, Luo HY, Ye ZL (2012) J Colloid Interface Sci 388:201–208

    Article  CAS  PubMed  Google Scholar 

  28. Wang F, Qin XF, Meng YF, Guo ZL, Yang LX, Ming YF (2013) Mater Sci Semicond Process 16:802–806

    Article  CAS  Google Scholar 

  29. Khalilian H, Behpour M, Atouf V, Hosseini SN (2015) Sol Energy 112:239–245

    Article  CAS  Google Scholar 

  30. Nag S, Roychowdhury A, Das D, Mukherjee S (2016) Mater Res Bull 74:109–116

    Article  CAS  Google Scholar 

  31. Lassoued A, Dkhil B, Gadri A, Ammar S (2017) Results Phys 7:3007–3015

    Article  Google Scholar 

  32. Viana MM, Soares VF, Mohallem NDS (2010) Ceram Int 36:2047–2053

    Article  CAS  Google Scholar 

  33. Abbas N, Shao GN, Haider MS, Imran SM, Park SS, Kim HT (2016) JIEC 39:112–120

    CAS  Google Scholar 

  34. Kumar PM, Badrinarayanan S, Sastry M (2000) Thin Solid Films 358:122–130

    Article  CAS  Google Scholar 

  35. Nollet LM, De Gelder LS (2000) Handbook of water analysis. CRC Press, Boca Raton

    Google Scholar 

  36. Razak S, Nawi MA, Haitham K (2014) Appl Surf Sci 319:90–98

    Article  CAS  Google Scholar 

  37. Li XZ, Li FB, Yang CL, Ge WK (2001) JPPA 141:209–217

    CAS  Google Scholar 

  38. Okumura T, Kinoshita Y, Uchiyama H, Imai H (2008) Mater Chem Phys 111:486–490

    Article  CAS  Google Scholar 

  39. Zhou M, Yu J, Cheng B (2006) J Hazard Mater 137:1838–1847

    Article  CAS  PubMed  Google Scholar 

  40. Hung WC, Fu SH, Tseng JJ, Chu H, Ko TH (2007) Chemosphere 66:2142–2151

    Article  CAS  PubMed  Google Scholar 

  41. Kuang S, Yang L, Luo S, Cai Q (2009) Appl Surf Sci 255:7385–7388

    Article  CAS  Google Scholar 

  42. Beydoun D, Amal R, Low GKC, McEvoy S (2000) J Phys Chem B 104:4387–4396

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Kashan for supporting this work with Grant No. 2564508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Rahbar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behpour, M., Shirazi, P. & Rahbar, M. Immobilization of the Fe2O3/TiO2 photocatalyst on carbon fiber cloth for the degradation of a textile dye under visible light irradiation. Reac Kinet Mech Cat 127, 1073–1085 (2019). https://doi.org/10.1007/s11144-019-01581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01581-1

Keywords

Navigation