Skip to main content
Log in

Effective oil spill cleaned up with environmentally friendly foams filled with eucalyptus charcoal residue

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

We developed polyurethane foams (PU) filled with eucalyptus charcoal residue (ECR) (5, 10, 20, and 30% by wt) for diesel sorption from seawater. The PU foams were characterized by FTIR, FT-Raman, SEM, density, TGA, contact angle, diesel S500 and S10 sorption, and recyclability. The ECR addition altered PU chemical structure, inducing new chemical bonds and probably altering cross-linking ability of the foams, as indicated by FTIR. FT-Raman spectra of PU-ECR foams showed shifts associated with filler dispersion and interaction with the matrix; besides, its addition decreased the foam pore size and density. The ECR addition did not significantly change the thermal behavior of PU foam and increased hydrophilicity in low ECR content and hydrophobicity in high ECR content samples. Experimental results showed adequate oil sorption capacity, and the optimal amount was 30% (by wt) ECR, which enhanced the diesel sorption from 4.1 and 5.9 g.g−1 to 9.6 and 8.8 g.g−1 for diesel S500 and S10, respectively. The Langmuir sorption isotherm was the best-fitting model to describe oil sorption. Reusability of the PU + 30% ECR was examined through 34 and 39 cycles for diesel S500 and S10, and about 50% of the initial sorption capacity remained at the end. The results indicated the success of developing a sustainable material and demonstrating feasibility in practical applications of PU-ECR foam for spilled oil removal from seawater or treatment of oily effluents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Narayanan P, Ravirajan A, Umasankaran A, Prakash DG, Kumar PS (2018) Theoretical and experimental investigation on the removal of oil spill by selective sorbents. J Ind Eng Chem 63:1–11

    Article  CAS  Google Scholar 

  2. Keshawy M, Farag RK, Gaffer A (2020) Egyptian crude oil sorbent based on coated polyurethane foam waste. Egypt J Pet 29:67–73

    Article  Google Scholar 

  3. Pena PGL, Northcross AL, de Lima MAG, de Rêgo RCF (2020) The crude oil spill on the Brazilian coast in 2019: the question of public health emergency. Rep Public Health 36:e00231019

    Google Scholar 

  4. Le QP, Olekhnovich RO, Uspenskaya MV, Vu THN (2021) Study on polyvinyl chloride nanofibers ability for oil spill elimination. Iran Polym J 30:473–483

    Article  CAS  Google Scholar 

  5. Keshavarz A, Zilouei H, Abdolmaleki A, Asadinezhad A, Nikkahah AA (2016) Impregnation of polyurethane foam with activated carbon for enhancing oil removal from water. Int J Environ Sci Technol 13:699–710

    Article  CAS  Google Scholar 

  6. Tayeb AM, Farouq R, Mohamed OA, Tony MA (2020) Oil spill clean-up using combined sorbents: a comparative investigation and design aspects. Int J Environ Anal Chem 100:311–323

    Article  CAS  Google Scholar 

  7. Ge J, Zhao HY, Zhu HW, Huang J, Shi L-A, Yu S-H (2016) Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Adv Mater 28:10459–10490

    Article  CAS  PubMed  Google Scholar 

  8. Saleem J, Adil Riaz M, Gordon M (2018) Oil sorbents from plastic wastes and polymers: a review. J Hazard Mater 341:424–437

    Article  PubMed  Google Scholar 

  9. Góes MM, Garcia JC, Rosa SLF, Mauricio MR, Carvalho GM (2020) New magnetic polyurethane hybrid composite for oil sorption. Plast Rubber Compos 49:10–17

    Article  Google Scholar 

  10. Hoang AT, Bui XL, Pham XD (2018) A novel investigation of oil and heavy metal adsorption capacity from as-fabricated adsorbent based on agricultural by-product and porous polymer. Energy Sourc Part A: Recov Util Environ Eff 40:929–939

    Article  CAS  Google Scholar 

  11. Navarathna CM, Bombuwala Dewage N, Keeton C, Pennisson J, Henderson R, Lashley B, Zhang X, Hassan EB, Perez F, Mohan D, Pittman CU Jr, Mlsna T (2020) Biochar adsorbents with enhanced hydrophobicity for oil spill removal. ACS Appl Mater Interf 12:9248–9260

    Article  CAS  Google Scholar 

  12. Pagnucco R, Phillips ML (2018) Comparative effectiveness of natural by-products and synthetic sorbents in oil spill booms. J Environ Manage 225:10–16

    Article  CAS  PubMed  Google Scholar 

  13. Santos OSH, da Silva MC, Yoshida MI (2017) Synthesis and performance of different polyurethane foams as oil sorbents. J Appl Polym Sci 134:1–8

    Article  Google Scholar 

  14. Bowen HJM (1970) Absorption by polyurethane foams; new method of separation. J Chem Soc A: Inorg, Phys, Theor 1082–1085

  15. Lee A, Deng Y (2015) Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur Polym J 63:67–73

    Article  CAS  Google Scholar 

  16. Oribayo O, Feng X, Rempel GL, Pan Q (2017) Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem Eng J 323:191–202

    Article  CAS  Google Scholar 

  17. Gandara M, Mulinari DR, Monticeli FM, Capri MR (2020) Sugarcane bagasse fibers reinforced in polyurethane for sorption of vegetal oil. J Nat Fibers 1–12

  18. Khalilifard M, Javadian S (2020) Magnetic superhydrophobic polyurethane sponge loaded with Fe3O4@oleic acid@graphene oxide as high performance adsorbent oil from water. Chem Eng J 408:127369

    Article  Google Scholar 

  19. Hoang PH, Hoang AT, Chung NH, Dien LQ, Nguyen XP, Pham XD (2018) The efficient lignocellulose-based sorbent for oil spill treatment from polyurethane and agricultural residue of Vietnam. Energy Sourc Part A: Recover Util Environ Eff 40:312–319

    Article  CAS  Google Scholar 

  20. Santos OSH, Coelho da Silva M, Silva VR, Mussel WN, Yoshida MI (2017) Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J Hazard Mater 324:406–413

    Article  CAS  PubMed  Google Scholar 

  21. Abdollahi M, Hosseini A (2014) Charcoal. Encycl Toxicol Third Ed 1:779–781

    Google Scholar 

  22. Raj Somera L, Cuazon R, Kenneth Cruz J, Joy Diaz L (2019) Kinetics and isotherms studies of the adsorption of Hg(II) onto iron modified montmorillonite/polycaprolactone nanofiber membrane. IOP Conf Ser: Mater Sci Eng 540:1–8

    Article  Google Scholar 

  23. Maia LS, da Silva AIC, Carneiro ES, Monticelli FM, Pinhati FR, Mulinari DR (2021) Activated carbon from palm fibres used as an adsorbent for methylene blue removal. J Polym Environ 29:1162

    Article  CAS  Google Scholar 

  24. Balarak D, Bandani F, Shehu Z, Ahmed NJ (2020) Adsorption properties of thermally treated rice husk for removal of sulfamethazine antibiotic from pharmaceutical wastewater. J Pharm Res Int 32:84–92

    Article  Google Scholar 

  25. Tan IAW, Ahmad AL, Hameed BH (2009) Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J Hazard Mater 164:473–482

    Article  CAS  PubMed  Google Scholar 

  26. Keshavarz A, Zilouei H, Abdolmaleki A, Asadinezhad A (2015) Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam. J Environ Manage 157:279–286

    Article  CAS  PubMed  Google Scholar 

  27. Stanzione M, Oliviero M, Cocca M, Errico ME, Gentile G, Avella M, Lavorgna M, Buonocore GG, Verdolotti L (2020) Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose. Carbohydr Polym 231:115772

    Article  CAS  PubMed  Google Scholar 

  28. Monir MU, Abd Aziz A, Kristanti RA, Yousuf A (2020) Syngas production from co-gasification of forest residue and charcoal in a pilot scale Downdraft reactor. Waste Biomass Valorization 11:635–651

    Article  CAS  Google Scholar 

  29. Martín-Alberca C, Zapata F, Carrascosa H, Ortega-Ojeda FE, García-Ruiz C (2016) Study of consumer fireworks post-blast residues by ATR-FTIR. Talanta 149:257–265

    Article  PubMed  Google Scholar 

  30. Trovati G, Sanches EA, Neto SC, Mascarenhas YP, Chierice GO (2010) Characterization of polyurethane resins by FTIR, TGA, and XRD. J Appl Polym Sci 115:263–268

    Article  CAS  Google Scholar 

  31. Włodarczyk D, Piszczyk Ł, Strankowska J (2016) Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J Spectrosc 2016(7520741):7520741

  32. George S (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, Chichester

  33. Cao H, Qi F, Liu R, Wang F, Zhang C, Zhang X, Chai Y, Zhai L (2017) The influence of hydrogen bonding on N-methyldiethanolamine-extended polyurethane solid-solid phase change materials for energy storage. RSC Adv 7:11244–11252

    Article  CAS  Google Scholar 

  34. Wolinska-Grabczy A, Kaczmarczyk B, Jankowski A (2008) Investigations of hydrogen bonding in the poly(urethane-urea)-based membrane materials by using FTIR spectroscopy. Polish J Chem Technol 10:53–56

    Article  Google Scholar 

  35. Wang FC, Feve M, Lam TM, Pascault J-P (1994) FTIR analysis of hydrogen bonding in amorphous linear aromatic polyurethanes. II. Influence of styrene solvent. J Polym Sci Part B Polym Phys 32:1315–1320

    Article  CAS  Google Scholar 

  36. Kerr T, Duncan K, Myers L (2013) Post fire materials identification by micro-Raman spectroscopy and principal components analysis. J Anal Appl Pyrolys 102:103–113

    Article  CAS  Google Scholar 

  37. Bolcu C, Vlase G, Vlase T, Albu P, Nicolae D, Sisu E (2013) Thermal behavior of some polyurethanes reticulated by aminated maltose. J Therm Anal Calorim 113:1409–1414

    Article  CAS  Google Scholar 

  38. Gupta TK, Singh BP, Tripathi RK, Dhakate SR, Singh VN, Mathur RB (2015) Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites. RSC Adv 5:16921–16930

    Article  CAS  Google Scholar 

  39. Li H, Liu L, Yang F (2012) Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar Pollut Bull 64:1648–1653

    Article  CAS  PubMed  Google Scholar 

  40. Szycher M (2013) Szycher’s handbook of polyurethanes, 2nd edn. CRC Press

    Google Scholar 

  41. Daussin BR, Elwell M, Van der Wal HR, Berthevas P, Brown M, Casati F, Farrissey W, Fosnaugh J, de Genova R, Herrington R, Hicks J, Hinze K, Hock K, Hunter D, Jeng L, Laycock D, Lidy W, Mispreuve H, Moore R, Nafziger L, Norton M, Parrish D, Priester R, Skaggs K, Stahler L, Sweet F, Thomas R, Turner R, Wiltz G, Woods T, Christenson CP, Schrock AK (2004) Flexible polyurethane foams. In: Lee S, Ramesh N (eds) Polymeric foams. CRC Press

    Google Scholar 

  42. Sharma R, Sheth PN (2018) Multi reaction apparent kinetic scheme for the pyrolysis of large size biomass particles using macro-TGA. Energy 151:1007–1017

    Article  CAS  Google Scholar 

  43. Souza AG, De Lima GF, Rodrigues RCLB, Cesarino I, Leão AL, Rosa DS (2021) A new approach for conversion of eucalyptus lignocellulosic biomass into cellulose nanostructures: a method that can be applied in industry. J Nat Fiber 18:1–11

    Article  Google Scholar 

  44. Askari F, Barikani M, Barmar M, Shokrolahi F, Vafayan M (2015) Study of thermal stability and degradation kinetics of polyurethane–ureas by thermogravimetry. Iran Polym J 24:783–789

    Article  CAS  Google Scholar 

  45. Van Den Berg MEH, Kuster S, Windhab EJ, Adamcik J, Mezzenga R, Geue T, Sagis LMC, Fischer P (2018) Modifying the contact angle of anisotropic cellulose nanocrystals: effect on interfacial rheology and structure. Langmuir 34:10932–10942

    Article  PubMed  Google Scholar 

  46. Singh S, Jelinek R (2020) Solar-mediated oil-spill cleanup by a carbon dot-polyurethane sponge. Carbon N Y 160:196–203

    Article  CAS  Google Scholar 

  47. Anju M, Renuka NK (2020) Magnetically actuated graphene coated polyurethane foam as potential sorbent for oils and organics. Arab J Chem 13:1752–1762

    Article  CAS  Google Scholar 

  48. Amorim FV, Padilha RJR, Vinhas GM, Luiz MR, Souza NC, Almeida YMB (2021) Development of hydrophobic polyurethane/castor oil biocomposites with agroindustrial residues for sorption of oils and organic solvents. J Colloid Interf Sci 581:442–454

    Article  Google Scholar 

  49. Huang J, Yan Z (2018) Adsorption mechanism of oil by resilient graphene aerogels from oil-water emulsion. Langmuir 34:1890–1898

    Article  CAS  PubMed  Google Scholar 

  50. Eze SI, Akpomie KG, Ezeofor CC, Osunkunle AA, Maduekwe OB, Okenyeka OU (2019) Isotherm and kinetic evaluation of Dialium guineense seed husk and its modified derivative as efficient sorbent for crude oil polluted water treatment. Water Conserv Sci Eng 4:21–31

    Article  Google Scholar 

  51. Martins LS, Zanini NC, Maia LS, Souza AG, Barbosa RFS, Rosa DS, Mulinari DR (2021) Crude oil and S500 diesel removal from seawater by polyurethane composites reinforced with palm fiber residues. Chemosphere 267:129288

    Article  CAS  PubMed  Google Scholar 

  52. Martins LS, Maciel F, Mulinari DR (2020) Influence of the granulometry and fiber content of palm residues on the diesel S-10 oil sorption in polyurethane/palm fiber biocomposites. Result Mater 8:100143

    Article  Google Scholar 

  53. Visco A, Quattrocchi A, Nocita D, Montanini R, Pistone A (2021) Polyurethane foams loaded with carbon nanofibers for oil spill recovery: mechanical properties under fatigue conditions and selective absorption in oil/water mixtures. Nanomaterials 11:735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Piotrowska-Kirschling A, Szelągowska-Rudzka K, Karczewski J, Brzeska J (2021) Application of shrimp waste for the synthesis of polyurethane–chitosan materials with potential use in sorption of oil micro-spills in water treatment. Sustainability 13:5098

    Article  CAS  Google Scholar 

  55. Ren L, Qiu Z, Wang Z, Yang D, Zhou D, Zhang T (2019) Preparation of biomass carbon/polyurethane foams for selective oil/water absorption. J Dispers Sci Technol 41:1872–1878

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (E-26/260.026/2018 and E-26/010.001800/2015), Fundação de Amparo à Pesquisa do Estado de São Paulo (2018/11277-7, 2018/25512-8, and 2013/07793-6), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (305819/2017-8 and 407822/2018-6; INCT-INFO). The authors thank the CAPES (Code 001), UFABC, Multiuser Central Facilities (UFABC), TA Instruments, and REVALORES Strategic Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniella R. Mulinari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1803 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, L.S., Zanini, N.C., de Souza, A.G. et al. Effective oil spill cleaned up with environmentally friendly foams filled with eucalyptus charcoal residue. Iran Polym J 31, 383–398 (2022). https://doi.org/10.1007/s13726-021-00997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00997-8

Keywords

Navigation