Skip to main content
Log in

Enhanced oil-spill removal and recovery from water bodies using diatomaceous earth and C18-silane-grafted polyurethane

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This research focuses on the novel synthesis of polyurethane (PU) foam surface functionalized with diatomaceous earth (DE) particles and non-fluoro octadecylsilane (C18), for the use in enhanced clean-up of oil spill contaminants from water. The modified PU foam has improved hydrophobicity, wettability, water repellency, and biodegradability, which eliminates some of the drawbacks of PU such as its hygroscopic nature, limited hydrophobicity, ecotoxicity, and less biodegradability. The modified PU foam has been characterized by scanning electron microscopy to understand the microstructural changes during the surface modifications, Fourier transform infrared spectroscopy to track the integration of functional groups, X-ray crystallographic study to indicate the increase in the crystallinity of the resultant foam due to the incorporation of silane, and thermogravimetric analysis to understand the thermal stability and to calculate the thermal mass loss during the chemical modification. Furthermore, to test the enhanced hydrophobicity and oil spill clearance from water, the water contact angle has been measured and crude oil absorption capacity has been tested. The results show increased water repellency attributed to the strong hydrophobicity, and about 2.13 folds of increased crude oil absorption in comparison to the unmodified PU foam. Hence, the results collectively suggest the use of the synthesized surface-modified PU foam with superior hydrophobicity, water repellence, and surface wettability as a potential candidate for enhanced crude oil absorption from water bodies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. A. Jernelov, Ambio (2010). https://doi.org/10.1007/s1328001000855

    Article  Google Scholar 

  2. E. Cakir, C. Sevgili, R. Fiskin, Trans. Res. D Trans. Environ. (2021). https://doi.org/10.1016/j.trd.2020.102662

    Article  Google Scholar 

  3. A.A. Elhakeem, W. Elshorbagy, R. Chebbi, Wat. Air and Soil Poll. (2007). https://doi.org/10.1007/s1127000794131

    Article  Google Scholar 

  4. M.M. Shriadah, Mar. Pollut. Bull. (1998). https://doi.org/10.1016/S0025326X(98)000551

    Article  Google Scholar 

  5. J.R. Geraci, D.J. St Aubins, J. Mar. Biolog. Assoc. U.K. 71, 246 (1990)

    Google Scholar 

  6. M. Fingas, Oil Spill Science & Technology, 1st edn. (Elsevier, 2011)

  7. A.A. Al-Majed, A.R. Adebayo, M.E. Hossain, J. Environ. Manage. (2012). https://doi.org/10.1016/j.jenvman.2012.07.034

    Article  Google Scholar 

  8. J. Fritt-Rasmussen, P.J. Brandvik, Mar. Pollut. Bull. (2011). https://doi.org/10.1016/j.marpolbul.2011.05.020

    Article  Google Scholar 

  9. F. Muttin, Appl. Ocean Res. (2008). https://doi.org/10.1016/j.apor.2008.07.001

    Article  Google Scholar 

  10. S.H. Schwartz, Int. Oil Spill Conf. Proc. (1979). https://doi.org/10.7901/2169335819791493

    Article  Google Scholar 

  11. A.T. Hoang, M.Q. Chau, J. Mech. Eng. Res. Dev. (2018). https://doi.org/10.26480/jmerd.02.2018.92.96

    Article  Google Scholar 

  12. M.T. Ghannam, O. Chaalal, Fuel (2003). https://doi.org/10.1016/S00162361(02)003836

    Article  Google Scholar 

  13. R.C. Prince, Environ. Sci. Technol. (2015). https://doi.org/10.1021/acs.est.5b00961

    Article  Google Scholar 

  14. E.Z. Ron, E. Rosenberg, Curr. Opin. Biotechnol. (2014). https://doi.org/10.1016/j.copbio.2014.02.004

    Article  Google Scholar 

  15. S.Z. Yang, H.J. Jin, Z. Wei, R.X. He, Y.J. Ji, X.M. Li, S.P. Yu, Pedosphere (2009). https://doi.org/10.1016/S10020160(09)601284

    Article  Google Scholar 

  16. M. Adebajo, R. Frost, J. Kloprogge, J. Porous Mater. (2003). https://doi.org/10.1023/A:1027484117065

    Article  Google Scholar 

  17. B. Doshi, M. Sillanpää, S. Kalliola, Water Res. (2018). https://doi.org/10.1023/A:1027484117065

    Article  Google Scholar 

  18. P.C. Brandão, T.C. Souza, C.A. Ferreira, C.E. Hori, L.L. Romanielo, J. Hazard. Mater. (2010). https://doi.org/10.1016/j.watres.2018.02.034

    Article  Google Scholar 

  19. M. Farid, A. Purniawan, A. Rasyida, M. Ramadhani, S. Komariyah, IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757899X/223/1/012021

    Article  Google Scholar 

  20. T. Viraraghavan, G.N. Mathavan, Oil Chem. Pollut. (1988). https://doi.org/10.1016/S02698579(88)800029

    Article  Google Scholar 

  21. M. Xu, J. Bian, C. Han, L. Dong, RSC Adv. (2016). https://doi.org/10.1039/C6RA19642J

    Article  Google Scholar 

  22. A. Cambiella, E. Ortea, G. Rios, J.M. Benito, C. Pazos, J. Coca, J. Hazard. Mater. (2006). https://doi.org/10.1016/j.jhazmat.2005.09.023

    Article  Google Scholar 

  23. T.R. Annunciado, T.H.D. Sydenstricker, S.C. Amico, Mar. Pollut. Bull. (2005). https://doi.org/10.1016/j.marpolbul.2005.04.043

    Article  Google Scholar 

  24. A.L. Ahmad, S. Sumathi, B.H. Hameed, J. Chem. Eng. (2005). https://doi.org/10.1016/j.cej.2005.01.016

    Article  Google Scholar 

  25. Y. Hozumi, T. Inaoka, T.Gomi, T. Goto, T. Uno, K. Rakutani,. U.S. Patent No.5,374,600 (1994)

  26. J. Pinto, A. Athanassiou, D. Fragouli, J. Phys. D. (2016). https://doi.org/10.1088/0022-3727/49/14/145601

    Article  Google Scholar 

  27. H. Li, L. Liu, F. Yang, Procedia Environ. Sci. (2013). https://doi.org/10.1016/j.proenv.2013.04.071

    Article  Google Scholar 

  28. H. Li, L. Liu, F. Yang, Mar. Pollut. Bull. (2012). https://doi.org/10.1016/j.marpolbul.2012.05.039

    Article  Google Scholar 

  29. N.V. Gama, A. Ferreira, A. Barros-Timmons, Materials (2018). https://doi.org/10.3390/ma11101841

    Article  Google Scholar 

  30. O. Oribayo, X. Feng, G.L. Rempel, Q. Pan, J. Chem. Eng. (2017). https://doi.org/10.1016/j.cej.2017.04.054

    Article  Google Scholar 

  31. L. Ren, Z. Qiu, Z. Wang, D. Yang, D. Zhou, T. Zhang, J. Dispers. Sci. Technol. (2020). https://doi.org/10.1080/01932691.2019.1637756

    Article  Google Scholar 

  32. X. Ma, C. Zhang, P. Gnanasekar, P. Xiao, Q. Luo, S. Li, D. Qin, T. Chen, J. Chen, J. Zhu, N. Yan, J. Chem. Eng. (2021). https://doi.org/10.1016/j.cej.2021.128956

    Article  Google Scholar 

  33. S. Qiu, Y. Li, G. Li, Z. Zhang, Y. Li, T. Wu, A.C.S. Sustain, Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.9b00098

    Article  Google Scholar 

  34. S. Zhao, L. Yin, Q. Zhou, C. Liu, K. Zhou, Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144700

    Article  Google Scholar 

  35. H.J. Perera, A. Goyal, H. Banu, MRS Energy Sustain. (2022). https://doi.org/10.1557/s43581022000222

    Article  Google Scholar 

  36. X. Lü, Z. Cui, W. Wei, J. Xie, L. Jiang, J. Huang, J. Liu, J. Chem. Eng. (2016). https://doi.org/10.1016/j.cej.2015.09.002

    Article  Google Scholar 

  37. J. Li, D. Li, W. Hu, J. Li, Y. Yang, Y. Wu, New J. Chem. (2015). https://doi.org/10.1039/C5NJ01565K

    Article  Google Scholar 

  38. H.J. Perera, H. Mortazavian, F.D. Blum, Langmuir (2017). https://doi.org/10.1021/acs.langmuir.7b00015

    Article  Google Scholar 

  39. H.J. Perera, F.D. Blum, Int. J. Adv. Sci. Eng. Technol. (2018). https://doi.org/10.1109/ICASET.2018.8376859

    Article  Google Scholar 

  40. H.J. Perera, F.D. Blum, Int. J. Adv. Sci. Eng. Technol. (2019). https://doi.org/10.1109/ICASET.2019.8714458

    Article  Google Scholar 

  41. H.J. Perera, B.K. Khatiwada, A. Paul, H. Mortazavian, F.D. Blum, J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.44072

    Article  Google Scholar 

  42. F. Kucuk, S. Sismanoglu, Y. Kanbur, U. Tayfun, Clean. Eng. Technol. (2021). https://doi.org/10.1016/j.clet.2021.100251

    Article  Google Scholar 

  43. S. Ye, B. Wang, Y. Shi, B. Wang, Y. Zhang, Y. Feng, C. Shen, Compos Commun (2020). https://doi.org/10.1016/j.coco.2020.100378

    Article  Google Scholar 

  44. N.A. Azhar, N. Adrus, W.A. Rahman, A.R. Majid, Sains Malays (2020). https://doi.org/10.17576/jsm2020490912

    Article  Google Scholar 

  45. P. Sabarinathan, V.E. Annamalai, K. Rajkumar, K. Vishal, V. Dhinakaran, Biomass Convers. Biorefin. (2022). https://doi.org/10.1007/s13399022024594

    Article  Google Scholar 

  46. A.M. Faisal, F. Salaün, S. Giraud, A. Ferri, Y. Chen, L. Wang, Polymers (2021). https://doi.org/10.3390/polym13050686

    Article  Google Scholar 

  47. B.R. Sedai, B.K. Khatiwada, H. Mortazavian, F.D. Blum, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.06.009

    Article  Google Scholar 

  48. V.T. Ambegoda, S.M. Egodage, F.D. Blum, M. Maddumaarachchi, J. Polym. Sci. (2021). https://doi.org/10.1002/app.50047

    Article  Google Scholar 

  49. Z.C. Ng, R.A. Roslan, W.J. Lau, M. Gürsoy, M. Karaman, N. Jullok, A. Ismail, Polymers (2020). https://doi.org/10.3390/polym12091883

    Article  Google Scholar 

  50. A. Marmur, Langmuir (2006). https://doi.org/10.1021/la052802j

    Article  Google Scholar 

  51. K.Y. Law, J. Phys. Chem. Lett. (2014). https://doi.org/10.1021/jz402762h

    Article  Google Scholar 

  52. Y. Zhu, D. Wang, L. Jiang, J. Jin, NPG Asia Mater. (2014). https://doi.org/10.1038/am.2014.23

    Article  Google Scholar 

  53. R.N. Wenzel, Eng. Chem. (1936). https://doi.org/10.1021/ie50320a024

    Article  Google Scholar 

  54. A. Martínez-Gómez, S. López, T. García, R. de Francisco, P. Tiemblo, N. García, ACS Omega (2017). https://doi.org/10.1021/acsomega.7b01717

    Article  Google Scholar 

  55. L. Mu, S. Yang, B. Hao, P.C. Ma, Polym. Chem. (2015). https://doi.org/10.1039/C5PY00861A

    Article  Google Scholar 

  56. T.E. O’Loughlin, Energy Fuels (2017). https://doi.org/10.1021/acs.energyfuels.7b01877

    Article  Google Scholar 

  57. S. JabbaryFarrokhi, H. Pakzad, M. Fakhri, A. Moosavi, Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2021.119240

    Article  Google Scholar 

  58. Z. Guo, B. Long, S. Gao, J. Luo, L. Wang, X. Huang, J. Hazard. Mater. (2021). https://doi.org/10.1016/j.jhazmat.2020.123838

    Article  Google Scholar 

  59. N. Xiao, Y. Zhou, Z. Ling, J. Qiu, Carbon (2013). https://doi.org/10.1016/j.carbon.2013.03.051

    Article  Google Scholar 

Download references

Funding

The research leading to these results received the funding from Abu Dhabi Department of Education and Knowledge (ADEK) under grant number AYIA19-008.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization and design of the study. The first author initiated the research and coordinated with the other authors in conceptualization, synthesis, characterization, and preparation of the manuscript. The second author was involved mainly in conceptualization and characterization. The third author focused on characterization, interpretation, and preparation of the manuscript. The fourth author also supported this project by involving in all of the above-mentioned critical areas.

Corresponding author

Correspondence to Helanka J. Perera.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perera, H.J., Goyal, A., Banu, H. et al. Enhanced oil-spill removal and recovery from water bodies using diatomaceous earth and C18-silane-grafted polyurethane. emergent mater. 6, 499–509 (2023). https://doi.org/10.1007/s42247-022-00431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00431-6

!-- Query ID="Q5" Text=" "Table of Content (TOC) Graphic" was captured as Graphical abstract. Please check if presented correctly." -->Keywords

Navigation