Skip to main content
Log in

Highly efficient and reusable superhydrophobic 3D polyurethane nanocomposite foam for remediation of oil polluted water

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The release of oil and organic pollutants into water bodies poses a severe environmental concern because they bioaccumulate and are difficult to degrade. In this study, an alternative polyurethane (PU) composite foam containing hydroxylated multi-walled carbon nanotubes (MWCNTs) and polydimethylsiloxane (PDMS) was prepared using a dip-coating method. Adding MWCNTs and PDMS transformed the hydrophilic pristine PU foam to a superhydrophobic PU/CNT-PDMS, as evidenced by the substantial increase in the water contact angle value. Our work evaluated the performance of the foams containing different MWCNTs loading and PDMS concentrations in the oil-water separation process. The foam comprising of 6.97 wt% MWCNTs and 6.52 wt% PDMS, exhibited the highest absorption performance, with the maximum absorption capacity of 33.83 and 44.98 g/g for engine oil and acetone. The recyclability test showed that the PU/CNT-PDMS hybrid foam retained at least 90% of its initial oil absorption capacity after 10 absorption-desorption cycles. The PU/CNT-PDMS hybrid foam produced showed excellent absorption characteristics and was reusable, confirming its potential as a suitable candidate for efficiently removing oil and organic solvents from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data can be made available on request from the authors.

References

  1. P.S. Dhumal, R.V. Khose, P.H. Wadekar, K.D. Lokhande, S. Some, Graphene–Bentonite supported free-standing, flexible membrane with switchable wettability for selective oil–water separation. Sep. Purif. Technol. 266, 118569 (2021)

    CAS  Google Scholar 

  2. D.K. Kulal, R.V. Khose, D.A. Pethsangave, P.H. Wadekar, S. Some, Biomass-derived lignocellulosic graphene composite: novel approach for removal of oil and organic solvent. ChemistrySelect. 4, 4568–4574 (2019)

    CAS  Google Scholar 

  3. E. Piperopoulos, L. Calabrese, E. Mastronardo, E. Proverbio, C. Milone, Thermo-Physical characterization of Carbon Nanotube Composite Foam for Oil Recovery Applications. Nanomaterials. 10, 86 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. X. He, S. Lin, X. Feng, Q. Pan, Synthesis and modification of polyurethane foam doped with multi-walled Carbon Nanotubes for Cleaning Up Spilled Oil from Water. J Polym. Environ. 29, 1271–1286 (2021)

    CAS  Google Scholar 

  5. A. Carpenter, Oil pollution in the North Sea: the impact of governance measures on oil pollution over several decades. Hydrobiologia. 845, 109–127 (2019)

    CAS  Google Scholar 

  6. S. Jamaly, A. Giwa, S.W. Hasan, Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. J. Environ. Sci. 37, 15–30 (2015)

    CAS  Google Scholar 

  7. B. Doshi, M. Sillanpää, S. Kalliola, A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018)

    CAS  PubMed  Google Scholar 

  8. D.D. Evans, G.W. Mulholland, H.R. Baum, W.D. Walton, Mcgrattan, in situ burning of oil spills. J. Res. Natl. Inst. Stand. Technol. 106, 14 (2001)

    Google Scholar 

  9. M.A. Zahed, H.A. Aziz, M.H. Isa, L. Mohajeri, S. Mohajeri, Optimal conditions for bioremediation of oily seawater. Bioresour Technol. 101, 9455–9460 (2010)

    CAS  PubMed  Google Scholar 

  10. T.R. Annunciado, T.H.D. Sydenstricker, S.C. Amico, Experimental investigation of various vegetable fibers as sorbent materials for oil spills. Mar. Pollut Bull. 50, 1340–1346 (2005)

    CAS  PubMed  Google Scholar 

  11. J. Wang, Y. Zheng, A. Wang, Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chem. Eng. J. 213, 1–7 (2012)

    CAS  Google Scholar 

  12. U.C. Paul, D. Fragouli, I.S. Bayer, A. Athanassiou, Functionalized cellulose networks for efficient oil removal from oil–water emulsions. Polymers. 8, 52 (2016)

    PubMed  PubMed Central  Google Scholar 

  13. H. Liu, B. Geng, Y. Chen, H. Wang, Review on the aerogel-type oil sorbents derived from nanocellulose. ACS Sustain. Chem. Eng. 5, 49–66 (2017)

    CAS  Google Scholar 

  14. G. Guo, L. Liu, Z. Dang, W. Fang, Recent progress of polyurethane-based materials for oil/water separation. World Sci. Pub Co. 12, 1730001 (2017)

    CAS  Google Scholar 

  15. X. Zhang, D. Liu, Y. Ma, J. Nie, G. Sui, Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance. Appl. Surf. Sci. 422, 116–124 (2017)

    CAS  Google Scholar 

  16. E. Piperopoulos, L. Calabrese, E. Mastronardo, E. Proverbio, C. Milone, Synthesis of reusable silicone foam containing carbon nanotubes for oil spill remediation. J. Appl. Polymer Sci. 135, 14 (2018)

    Google Scholar 

  17. C.L. Yu, C.M. Yu, L. Cui, Z. Song, X. Zhao, Y. Ma, L. Jiang, Facile preparation of the porous PDMS oil-absorbent for oil/water separation. Adv. Mater. Interfaces. 4, 1600862 (2017)

    Google Scholar 

  18. H. Shamsijazeyi, C.A. Miller, M.S. Wong, J.M. Tour, R. Verduzco, Polymer-coated nanoparticles for enhanced oil recovery. J. Appl. Polym. Sci. (2014). https://doi.org/10.1002/app.40576

    Article  Google Scholar 

  19. X. Ge, X. Men, Z. Zhu, A. Zhang, Superhydrophobic monolithic material with tunable wettability for oil and water separation. J. Mater. Sci. 50, 2365–2369 (2015)

    CAS  Google Scholar 

  20. K.V. Maheshkumar, K. Krishnamurthy, P. Sathishkumar, S. Sahoo, E. Uddin, S.K. Pal, R. Rajasekar, Research updates on graphene oxide-based polymeric nanocomposites. Polym. Compos. 35, 2297–2310 (2014)

    CAS  Google Scholar 

  21. D.W. Kim, K. Eum, H. Kim, D. Kim, M.D. de Mello, K. Park, Tsapatsis. Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation. Chem. Eng. J. 372, 509–515 (2019)

    CAS  Google Scholar 

  22. V. Nandwana, S.M. Ribet, R.D. Reis, Y. Kuang, Y. More, V.P. Dravid, O.H.M. Sponge, A versatile, efficient, and ecofriendly environmental remediation platform. Ind. Eng. Chem. Res. 59, 10945–10954 (2020)

    CAS  Google Scholar 

  23. T. Zhang, B. Gu, F. Qiu, X. Peng, X. Yue, D. Yang, Preparation of carbon nanotubes/Polyurethane hybrids as a synergistic absorbent for efficient oil/water separation. Fibers Polym. 19, 2195–2202 (2018)

    CAS  Google Scholar 

  24. M.T.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4, 1946–1971 (2011)

    CAS  Google Scholar 

  25. C. Xia, Y. Li, T. Fei, W. Gong, Facile one-pot synthesis of superhydrophobic reduced graphene oxide-coated polyurethane sponge at the presence of ethanol for oil-water separation. Chem. Eng. J. 345, 648–658 (2018)

    CAS  Google Scholar 

  26. S.M. Kong, Y. Han, N. Won, Yang, polyurethane sponge with a modified specific surface for repeatable oil – water separation. ACS Omega. 6, 33969–33975 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. ASTM, Standard test methods for flexible cellular materials - slab, bonded, and molded urethane foams (2022). Available online: http://www.astm.org/Standards/D3574 (Accessed on 21st January 2022)

  28. J. Pinto, E. Solorzano, M.A. Rodriguez-Perez, DeSaja, characterization of the cellular structure based on user-interactive image analysis procedures. J. Cell. Plast. 49, 555–575 (2013)

    Google Scholar 

  29. Z. Horak, K. Dvorak, L. Zarybnicka, H. Vojackova, J. Dvorakova, Vilimek, experimental measurements of mechanical properties of pur foam used for testing medical devices and instruments depending on temperature, density and strain rate. Materials. 13, 1–13 (2020)

    Google Scholar 

  30. H. Li, L. Liu, F. Yang, Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar. Pollut Bull. 64, 1648–1653 (2012)

    CAS  PubMed  Google Scholar 

  31. D. Wu, L. Fang, Y. Qin, W. Wu, C. Mao, H. Zhu, Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Mar. Pollut Bull. 84, 263–267 (2014)

    CAS  PubMed  Google Scholar 

  32. A. Keshavarz, H. Zilouei, A. Abdolmaleki, A. Asadinezhad, Enhancing oil removal from water by immobilizing multi-wall carbon nanotubes on the surface of polyurethane foam. J. Environ. Mgt. 157, 279–286 (2015)

    CAS  Google Scholar 

  33. L. Calabrese, E. Piperopoulos, V.S. Jovanovic, V. Mitic, M. Mitic, C. Milone, Proverbio, oil spill remediation: selectivity, sorption, and squeezing capacity of silicone composite foams filled with clinoptilolite. J. Appl. Pol. Sci. 139, 29 (2022)

    Google Scholar 

  34. Z. Rahmani, M.T. Samadi, A. Kazemi, A.M. Rashidi, Rahmani, nano porous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. J. Environ. Chem. Eng. 5, 5025–5032 (2017)

    CAS  Google Scholar 

  35. J. Chang, Y. Shi, M. Wu, R. Li, L. Shi, Y. Jin, W. Qing, C. Tang, Wang, solar-assisted fast cleanup of heavy oil spills using a photothermal sponge. J. Mater. Chem. 6, 9192–9199 (2018)

    CAS  Google Scholar 

  36. Y. Wang, Y. Zhu, C. Zhang, J. Li, Guan, transparent, superhydrophobic surface with varied surface tension responsiveness in wettability based on tunable porous silica structure for gauging liquid surface tension. ACS Appl. Mater. Interfaces. 9, 4142–4150 (2017)

    CAS  PubMed  Google Scholar 

  37. A. Mata, A.J. Fleischman, Roy, characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/ nanosystems. Biomed. Microdevices. 7, 281–293 (2005)

    CAS  PubMed  Google Scholar 

  38. Q. Shuai, X. Yang, Y. Luo, H. Tang, X. Luo, A superhydrophobic poly(dimethylsiloxane)-TiO2 coated polyurethane sponge for selective absorption of oil from water. Mater. Chem. And Phys. 162, 94–99 (2015)

    CAS  Google Scholar 

  39. Y. Peng, Z. Zheng, P. Sun, X. Wang, T. Zhang, Synthesis and characterization of polyphenol-based polyurethane. New. J. Chem. 37, 729 (2013)

    CAS  Google Scholar 

  40. J. Pinto, J.A. Heredia-Guerrero, A. Athanassiou, D. Fragouli, Reusable nanocomposite-coated polyurethane foams for the remediation of oil spills. Int. J. Environ. Sci. Technol. 14, 2055–2066 (2017)

    CAS  Google Scholar 

  41. S. Yang, L. Chen, S. Liu, W. Hou, J. Zhu, P. Zhao, Q. Zhang, Facile and sustainable fabrication of high-performance cellulose sponge from cotton for oil-in-water emulsion separation. J. of H MB 408, 124408 (2021)

    CAS  Google Scholar 

  42. J.M. Kim, J.H. Kim, Y. Choi, S. Park, K. Park, Effect of graphene oxide on polyurethane foam mechanical strength. J. Korean Soc. Of Mar. Eng. 40, 493–498 (2016)

    Google Scholar 

  43. P. Hou, S. Bai, Q. Yang, C. Liu, H. Cheng, Multi-step purification of carbon nanotubes. Carbon. 40, 81–85 (2002)

    CAS  Google Scholar 

  44. H. Wang, E. Wang, Z. Liu, D. Gao, R. Yuan, L. Sun, Y. Zhu, A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil-water separation through a chemical fabrication. J. Mater. Chem. A 3, 266–273 (2014)

    Google Scholar 

  45. M. Khosravi, S. Azizian, Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup. ACS Appl. Mater. Interfaces. 7, 25326–25333 (2015)

    CAS  PubMed  Google Scholar 

  46. O. Oribayo, X. Feng, G.L. Rempel, Q. Pan, Synthesis of lignin-based polyurethane/ graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem. Eng. J. 323, 191–202 (2017)

    CAS  Google Scholar 

  47. L. Kong, Y. Li, F. Qiu, T. Zhang, Q. Guo, X. Zhang, D. Yang, J. Xu, M. Xue, Fabrication of hydrophobic and oleophilic polyurethane foam sponge modified with hydrophobic Al2O3 for oil/water separation. J. Ind. Eng. Chem. 58, 369–375 (2018)

    CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AHA and ISJ; methodology, JAK, AHA, ISJ, NZ and SNAMJ.; formal analysis, JAK and AHA; investigation, JAK.; resources, JAK and AH A; data curation, JAK and AHA; writing—original draft preparation, JAK.; writing—review and editing, AHA, ISJ, NZ and SNAMJ.; visualization, JAK; supervision, AHA, ISJ, NZ and SNAMJ; project administration, AHA, ISJ, NZ and SNAMJ. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Abdul Halim Abdullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadili, J.A., Abdullah, A.H., Johari, I.S. et al. Highly efficient and reusable superhydrophobic 3D polyurethane nanocomposite foam for remediation of oil polluted water. J Porous Mater 31, 449–461 (2024). https://doi.org/10.1007/s10934-023-01529-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01529-w

Keywords

Navigation