Skip to main content

Advertisement

Log in

Syngas Production from Co-gasification of Forest Residue and Charcoal in a Pilot Scale Downdraft Reactor

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A study on the co-gasification of forest residue and wood charcoal was executed on pilot-scale 50 kWth downdraft gasification reactor. The reactor parameters (i.e. temperature, pressure) were evaluated on various parameters namely heating value, syngas yield, exergy, feedstock consumption rate and produced syngas composition. To facilitate the optimization of the exergy efficiency of gasification systems, a comprehensive fixed-bed gasification model has been established using an Aspen Plus (V8.6) simulator to predict the product rate of syngas. The model is applicable for efficient analysis of fixed-bed biomass gasification under variable operating conditions, such as syngas ratio, moisture content of feedstock, and air inlet location. The concentration variation of the downdraft reactor showed that the CO concentration increased with increasing wood charcoal (up to 40%) with forest residue. In contrary, an opposite trend for the case CO2 concentration was observed with increasing the wood charcoal in the reactor. The optimal yield of syngas (H2:CO) ratio was found to be 1.14 after the FR:WC mixture of 70:30 and 60:40 w/w for maximizing the benefits of the gasification process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Catalán-Martínez, D., Domine, M.E., Serra, J.M.: Liquid fuels from biomass: an energy self-sustained process integrating H2 recovery and liquid refining. Fuel 212(Supplement C), 353–363 (2018). https://doi.org/10.1016/j.fuel.2017.10.014

    Article  Google Scholar 

  2. Zakir Hossain, H.M., Hasna Hossain, Q., Uddin Monir, M.M., Ahmed, M.T.: Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: Revisited. Renew. Sustain. Energy Rev. 39, 35–41 (2014). https://doi.org/10.1016/j.rser.2014.07.007

    Article  Google Scholar 

  3. Monir, M.U., Abd Aziz, A., Kristanti, R.A., Yousuf, A.: Co-gasification of empty fruit bunch in a downdraft reactor: a pilot scale approach. Bioresour. Technol. Rep. 1, 39–49 (2018). https://doi.org/10.1016/j.biteb.2018.02.001

    Article  Google Scholar 

  4. Cai, J., He, Y., Yu, X., Banks, S.W., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgwater, A.V.: Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 76, 309–322 (2017). https://doi.org/10.1016/j.rser.2017.03.072

    Article  Google Scholar 

  5. Osman, N., Othman, H.T., Karim, R.A., Mazlan, M.A.F.: Biomass in Malaysia: forestry-based residues. Int. J. Biomass Renew. 3, 7–14 (2014)

    Google Scholar 

  6. Aditiya, H.B., Chong, W.T., Mahlia, T.M.I., Sebayang, A.H., Berawi, M.A., Nur, H.: Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: a review. Waste Manag. 47(Part A), 46–61 (2016). https://doi.org/10.1016/j.wasman.2015.07.031

    Article  Google Scholar 

  7. Nanda, S., Dalai, A.K., Berruti, F., Kozinski, J.A.: Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste and Biomass Valoriz. 7(2), 201–235 (2016). https://doi.org/10.1007/s12649-015-9459-z

    Article  Google Scholar 

  8. Oh, T.H., Hasanuzzaman, M., Selvaraj, J., Teo, S.C., Chua, S.C.: Energy policy and alternative energy in Malaysia: issues and challenges for sustainable growth—an update. Renew. Sustain. Energy Rev. 81(Part 2), 3021–3031 (2018). https://doi.org/10.1016/j.rser.2017.06.112

    Article  Google Scholar 

  9. Carrasco, J.L., Gunukula, S., Boateng, A.A., Mullen, C.A., DeSisto, W.J., Wheeler, M.C.: Pyrolysis of forest residues: an approach to techno-economics for bio-fuel production. Fuel 193(Supplement C), 477–484 (2017). https://doi.org/10.1016/j.fuel.2016.12.063

    Article  Google Scholar 

  10. Rago, Y., Mohee, R., Surroop, D.: A review of thermochemical technologies for the conversion of waste biomass to biofuel and energy in developing countries. In: Leal Filho, W., Surroop, D. (eds.) The Nexus: Energy, Environment and Climate Change, pp. 127–143. Springer, Cham (2018)

    Chapter  Google Scholar 

  11. Patel, V.R., Patel, D., Varia, N., Patel, R.N.: Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier. Energy. 119, 834–844 (2017). https://doi.org/10.1016/j.energy.2016.11.057

    Article  Google Scholar 

  12. Monir, M.U., Yousuf, A., Aziz, A.A., Atnaw, S.M.: Enhancing co-gasification of coconut shell by reusing char. Indian J. Sci. Technol. 10(6), 1–4 (2017). https://doi.org/10.17485/ijst/2017/v10i6/111217

    Article  Google Scholar 

  13. Hu, J., Shao, J., Yang, H., Lin, G., Chen, Y., Wang, X., Zhang, W., Chen, H.: Co-gasification of coal and biomass: synergy, characterization and reactivity of the residual char. Bioresour. Technol. 244(Part 1), 1–7 (2017). https://doi.org/10.1016/j.biortech.2017.07.111

    Article  Google Scholar 

  14. Ramos, A., Monteiro, E., Silva, V., Rouboa, A.: Co-gasification and recent developments on waste-to-energy conversion: a review. Renew. Sustain. Energy Rev. 81, 380–398 (2018)

    Article  Google Scholar 

  15. Wiyono, A., Pratiwi, T.P.S.I., Priadi, C.R., Surjosatyo, A., Dafiqurrohman, H.: Investigation of co-gasification characteristics of wood-coconut fibers pellet and rice husk mixtures in a downdraft fixed bed gasifier. Int. J. Technol. 8(7), 1207–1216 (2017)

    Article  Google Scholar 

  16. Block, C., Ephraim, A., Weiss-Hortala, E., Minh, D.P., Nzihou, A., Vandecasteele, C.: Co-pyrogasification of plastics and biomass, a review. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-0219-8

    Article  Google Scholar 

  17. Rupesh, S., Muraleedharan, C., Arun, P.: Energy and exergy analysis of syngas production from different biomasses through air-steam gasification. Front. Energy (2016). https://doi.org/10.1007/s11708-016-0439-1

    Article  Google Scholar 

  18. Mallick, D., Mahanta, P., Moholkar, V.S.: Co-gasification of coal and biomass blends: Chemistry and engineering. Fuel 204(Supplement C), 106–128 (2017). https://doi.org/10.1016/j.fuel.2017.05.006

    Article  Google Scholar 

  19. Zhang, X., Li, H., Liu, L., Bai, C., Wang, S., Zeng, J., Liu, X., Li, N., Zhang, G.: Thermodynamic and economic analysis of biomass partial gasification process. Appl. Therm. Eng. 129(Supplement C), 410–420 (2018). https://doi.org/10.1016/j.applthermaleng.2017.10.069

    Article  Google Scholar 

  20. Yi, Q., Qi, F., Cheng, G., Zhang, Y., Xiao, B., Hu, Z., Liu, S., Cai, H., Xu, S.: Thermogravimetric analysis of co-combustion of biomass and biochar. J. Therm. Anal. Calorim. 112(3), 1475–1479 (2013). https://doi.org/10.1007/s10973-012-2744-1

    Article  Google Scholar 

  21. Ng, W.C., You, S., Ling, R., Gin, K.Y.-H., Dai, Y., Wang, C.-H.: Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis. Energy 139(Supplement C), 732–742 (2017). https://doi.org/10.1016/j.energy.2017.07.165

    Article  Google Scholar 

  22. Hu, M., Gao, L., Chen, Z., Ma, C., Zhou, Y., Chen, J., Ma, S., Laghari, M., Xiao, B., Zhang, B., Guo, D.: Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Convers. Manag. 111, 409–416 (2016). https://doi.org/10.1016/j.enconman.2015.12.064

    Article  Google Scholar 

  23. Kaushal, P., Tyagi, R.: Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS. Renew. Energy 101(Supplement C), 629–636 (2017). https://doi.org/10.1016/j.renene.2016.09.011

    Article  Google Scholar 

  24. Peters, J.F., Banks, S.W., Bridgwater, A.V., Dufour, J.: A kinetic reaction model for biomass pyrolysis processes in ASPEN Plus. Appl. Energy 188, 595–603 (2017)

    Article  Google Scholar 

  25. Ali, D.A., Gadalla, M.A., Abdelaziz, O.Y., Hulteberg, C.P., Ashour, F.H.: Co-gasification of coal and biomass wastes in an entrained flow gasifier: modelling, simulation and integration opportunities. J Nat. Gas Sci. Eng. 37, 126–137 (2017)

    Article  Google Scholar 

  26. Darmawan, A., Hardi, F., Yoshikawa, K., Aziz, M., Tokimatsu, K.: Enhanced process integration of entrained flow gasification and combined cycle: modeling and simulation using Aspen Plus. Energy Procedia 105, 303–308 (2017)

    Article  Google Scholar 

  27. Channiwala, S.A., Parikh, P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8), 1051–1063 (2002). https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  Google Scholar 

  28. Basu, P.: Biomass Gasification and Pyrolysis: Practical Design and Theory. Academic Press, Burlington (2010)

    Google Scholar 

  29. Atnaw, S.M., Sulaiman, S.A., Singh, L., Wahid, Z.A., Che, C.K.M.F.B., Yahya, K.: Modeling and parametric study for maximizing heating value of gasification syngas. BioResources 12(2), 2548–2564 (2017)

    Article  Google Scholar 

  30. Shahbaz, M., Yusup, S., Inayat, D.A., Ammar, M., Patrick, D.O., Pratama, A., Naqvi, S.R.: Syngas production from steam gasification of Palm kernel shell with subsequent CO2 capturing using CaO sorbent: an Aspen plus modelling. Energy Fuels (2017). https://doi.org/10.1021/acs.energyfuels.7b02670

    Article  Google Scholar 

  31. Valdés, C.F., Marrugo, G., Chejne, F., Montoya, J.I., Gómez, C.A.: Pilot-scale fluidized-bed co-gasification of palm kernel shell with sub-bituminous coal. Energy Fuels 29(9), 5894–5901 (2015)

    Article  Google Scholar 

  32. Andersson, R., Boutonnet, M., Järås, S.: On-line gas chromatographic analysis of higher alcohol synthesis products from syngas. J. Chromatogr. A 1247, 134–145 (2012)

    Article  Google Scholar 

  33. Shayan, E., Zare, V., Mirzaee, I.: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers. Manag. 159, 30–41 (2018). https://doi.org/10.1016/j.enconman.2017.12.096

    Article  Google Scholar 

  34. Sansaniwal, S.K., Pal, K., Rosen, M.A., Tyagi, S.K.: Recent advances in the development of biomass gasification technology: a comprehensive review. Renew. Sustain. Energy Rev. 72, 363–384 (2017). https://doi.org/10.1016/j.rser.2017.01.038

    Article  Google Scholar 

  35. Sikarwar, V.S., Zhao, M., Fennell, P.S., Shah, N., Anthony, E.J.: Progress in biofuel production from gasification. Prog. Energy Combust. Sci. 61, 189–248 (2017). https://doi.org/10.1016/j.pecs.2017.04.001

    Article  Google Scholar 

  36. Oh, G., Ra, H.W., Yoon, S.M., Mun, T.Y., Seo, M.W., Lee, J.G., Yoon, S.J.: Gasification of coal water mixture in an entrained-flow gasifier: effect of air and oxygen mixing ratio. Appl. Therm. Eng. 129(Supplement C), 657–664 (2018). https://doi.org/10.1016/j.applthermaleng.2017.10.055

    Article  Google Scholar 

  37. Saw, W.L., Pang, S.: Co-gasification of blended lignite and wood pellets in a 100 kW dual fluidised bed steam gasifier: the influence of lignite ratio on producer gas composition and tar content. Fuel 112, 117–124 (2013). https://doi.org/10.1016/j.fuel.2013.05.019

    Article  Google Scholar 

  38. Yang, H., Chen, H.: Biomass gasification for synthetic liquid fuel production. In: Luque, R., Speight, J.G. (eds.) Gasification for Synthetic Fuel Production. pp. 241–275. Woodhead Publishing, Oxford (2015)

    Chapter  Google Scholar 

  39. Loh, S.K.: The potential of the Malaysian oil palm biomass as a renewable energy source. Energy Convers. Manag.. 141, 285–298 (2017). https://doi.org/10.1016/j.enconman.2016.08.081

    Article  Google Scholar 

  40. Al-Rahbi, A.S., Williams, P.T.: Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl. Energy. 190, 501–509 (2017). https://doi.org/10.1016/j.apenergy.2016.12.099

    Article  Google Scholar 

  41. Adrados, A., Lopez-Urionabarrenechea, A., Acha, E., Solar, J., Caballero, B.M., de Marco, I.: Hydrogen rich reducing gases generation in the production of charcoal from woody biomass carbonization. Energy Convers. Manag. 148(Supplement C), 352–359 (2017). https://doi.org/10.1016/j.enconman.2017.06.010

    Article  Google Scholar 

  42. Chew, J.-J., Doshi, V., Yong, S.-T., Bhattacharya, S.: Kinetic study of torrefaction of oil palm shell, mesocarp and empty fruit bunch. J. Therm. Anal. Calorim. 126(2), 709–715 (2016). https://doi.org/10.1007/s10973-016-5518-3

    Article  Google Scholar 

  43. Zhang, Z., Pang, S., Levi, T.: Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass. Renew. Energy 101, 356–363 (2017)

    Article  Google Scholar 

  44. Ramani, S., Allison, J.D., Keller, A.E.: Controlling syngas H2: CO ratio by controlling feed hydrocarbon composition. Google Patents (2004)

  45. Kim, K.H., Eom, I.Y., Lee, S.M., Choi, D., Yeo, H., Choi, I.-G., Choi, J.W.: Investigation of physicochemical properties of biooils produced from yellow poplar wood (Liriodendron tulipifera) at various temperatures and residence times. J. Anal. Appl. Pyrol. 92(1), 2–9 (2011). https://doi.org/10.1016/j.jaap.2011.04.002

    Article  Google Scholar 

  46. Longhin, E., Gualtieri, M., Capasso, L., Bengalli, R., Mollerup, S., Holme, J.A., Øvrevik, J., Casadei, S., Di Benedetto, C., Parenti, P., Camatini, M.: Physico-chemical properties and biological effects of diesel and biomass particles. Environ. Pollut. 215, 366–375 (2016). https://doi.org/10.1016/j.envpol.2016.05.015

    Article  Google Scholar 

  47. Lin, G., Yang, H., Wang, X., Mei, Y., Li, P., Shao, J., Chen, H.: The moisture sorption characteristics and modelling of agricultural biomass. Biosyst. Eng. 150, 191–200 (2016). https://doi.org/10.1016/j.biosystemseng.2016.08.006

    Article  Google Scholar 

  48. Song, W., Zhang, M., Liang, J., Han, G.: Removal of As(V) from wastewater by chemically modified biomass. J. Mol. Liq. 206, 262–267 (2015). https://doi.org/10.1016/j.molliq.2015.03.007

    Article  Google Scholar 

  49. Liu, C.-F., Ren, J.-L., Xu, F., Liu, J.-J., Sun, J.-X., Sun, R.-C.: Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J. Agric. Food Chem. 54(16), 5742–5748 (2006)

    Article  Google Scholar 

  50. Meng, A., Zhou, H., Qin, L., Zhang, Y., Li, Q.: Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrol. 104, 28–37 (2013). https://doi.org/10.1016/j.jaap.2013.09.013

    Article  Google Scholar 

  51. Wang, D., Geng, Z., Li, B., Zhang, C.: High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons. Electrochim. Acta 173(Supplement C), 377–384 (2015). https://doi.org/10.1016/j.electacta.2015.05.080

    Article  Google Scholar 

  52. Cai, Y., Yang, X., Liang, T., Dai, L., Ma, L., Huang, G., Chen, W., Chen, H., Su, H., Xu, M.: Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high-performance hydrogen evolution. Nanotechnology 25(46), 465401 (2014)

    Article  Google Scholar 

  53. Chia, C.H., Joseph, S.D., Rawal, A., Linser, R., Hook, J.M., Munroe, P.: Microstructural characterization of white charcoal. J. Anal. Appl. Pyrol. 109(Supplement C), 215–221 (2014). https://doi.org/10.1016/j.jaap.2014.06.009

    Article  Google Scholar 

  54. Kalita, P., Baruah, D.: Investigation of biomass gasifier product gas composition and its characterization. In: Kalita, P., Baruah, D. (eds.) Coal and Biomass Gasification, pp. 115–149. Springer, Singapore (2018)

    Chapter  Google Scholar 

  55. Kumabe, K., Hanaoka, T., Fujimoto, S., Minowa, T., Sakanishi, K.: Co-gasification of woody biomass and coal with air and steam. Fuel 86(5), 684–689 (2007)

    Article  Google Scholar 

  56. Fermoso, J., Arias, B., Plaza, M.G., Pevida, C., Rubiera, F., Pis, J.J., García-Peña, F., Casero, P.: High-pressure co-gasification of coal with biomass and petroleum coke. Fuel Process. Technol. 90(7), 926–932 (2009). https://doi.org/10.1016/j.fuproc.2009.02.006

    Article  Google Scholar 

  57. Prasertcharoensuk, P., Hernandez, D.A., Bull, S.J., Phan, A.N.: Optimisation of a throat downdraft gasifier for hydrogen production. Biomass Bioenerg. 116, 216–226 (2018). https://doi.org/10.1016/j.biombioe.2018.06.019

    Article  Google Scholar 

  58. Roy, D., Ghosh, S.: Energy and exergy analyses of an integrated biomass gasification combined cycle employing solid oxide fuel cell and organic Rankine cycle. Clean Technol. Environ. Policy. 19(6), 1693–1709 (2017). https://doi.org/10.1007/s10098-017-1358-5

    Article  Google Scholar 

  59. Zaleta-Aguilar, A., Rodriguez-Alejandro, D.A., Rangel-Hernández, V.H.: Application of an exergy-based thermo characterization approach to diagnose the operation of a biomass-fueled gasifier. Biomass Bioenerg. 116, 1–7 (2018). https://doi.org/10.1016/j.biombioe.2018.05.008

    Article  Google Scholar 

  60. Prins, M.J., Ptasinski, K.J.: Energy and exergy analyses of the oxidation and gasification of carbon. Energy 30(7), 982–1002 (2005). https://doi.org/10.1016/j.energy.2004.08.010

    Article  Google Scholar 

  61. Hagos, F.Y., Aziz, A.R.A., Sulaiman, S.A.: Study of syngas combustion parameters effect on internal combustion engine. Asian J. Sci. Res. 6(2), 187–196 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Faculty of Engineering and Technology (FTech), University Malaysia Pahang, Malaysia for providing lab facilities (Energy Mgmt. & Environmental Laboratory; Toxicology Laboratory). The authors would also acknowledge for the financial support of RDU (Grant No. RDU160317) and GRS (Grant No. PGRS170370) received from University Malaysia Pahang, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azrina Abd Aziz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monir, M.U., Abd Aziz, A., Kristanti, R.A. et al. Syngas Production from Co-gasification of Forest Residue and Charcoal in a Pilot Scale Downdraft Reactor. Waste Biomass Valor 11, 635–651 (2020). https://doi.org/10.1007/s12649-018-0513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0513-5

Keywords

Navigation