Skip to main content
Log in

Transcriptome analysis of grapevine shoots exposed to chilling temperature for four weeks

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Low temperature is an important factor that can limit the growth of grapevine (Vitis spp.). In this study, we analyzed the transcriptome of grapevine shoots exposed to cold temperatures to identify genes expressed specifically at low temperature, determine their function based on GO-term analysis, and compare their differential expression. We analyzed two varieties that differed in cold tolerance, the more-tolerant ‘Campbell Early’ and the less-tolerant ‘Kyoho’ grapevine varieties. This was accomplished through annotation of data from sequencing short reads on the Solexa platform. We assembled more than 120 million high-quality trimmed reads using Velvet followed by Oases. Functional categorization of up-regulated transcripts revealed the conservation of genes involved in various biological processes including cellular processes, primary metabolic processes, and biological regulation. The major up-regulated genes in ‘Campbell Early’ included loci encoding response regulator 20, expansin-like B1, a leucine-rich repeat (LRR) family protein, and galactinol synthase 2. The major down-regulated genes in ‘Campbell Early’ included loci encoding fasciclinlike arabinogalactan 9, a GDSL-like lipase/acylhydrolase superfamily protein, early nodulin-like protein 14, and trichome birefringence-like 38. The differential expression observed by sequence analysis was confirmed by real-time PCR. Genes encoding a non-specific serine/threonine protein kinase, peroxidase, and ubiquitin-protein ligase showed reduced expression in response to low temperature in both grapevine varieties. Transcriptome analysis of shoots exposed to chilling could lead to new insights into the molecular basis of tolerance to low-temperature in grapevine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADA-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    CAS  PubMed  Google Scholar 

  • Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growthpromoting rhizobacterium, Burkholderia phytofirmans Strain PsJN. Appl Environ Microbiol 72:7246–7255

    Article  CAS  Google Scholar 

  • Buttrose MS (1969) Vegetative growth of grapevine varieties under controlled temperature and light intensity. Vitis 8:280–285

    Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 11:113–116

    Article  CAS  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 101:15243–15248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485

    Article  PubMed  PubMed Central  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller MP, Telli G (1999) An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Ann Appl Biol 135:589–595

    Article  Google Scholar 

  • Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK (2006) Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol 142:98–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  CAS  PubMed  Google Scholar 

  • Hemstad PR, Luby JJ (2000) Utilization of Vitis riparia for the development of new wine varieties with resistance to disease and extreme cold. Acta Hortic 528:487–490

    Article  Google Scholar 

  • Hewezi T, Leger M, Kayal WE, Gentzbittel L (2006) Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity. J Exp Bot 57:3109–3122

    Article  CAS  PubMed  Google Scholar 

  • Horák J, Grefen C, Berendzen KW, Hahn A, Stierhof YD, Stadelhofer B, Stahl M, Koncz C, Harter K (2008) The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biol 8:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Li L, Myers JR, Marth GT (2012) ART: A next-generation sequencing read simulator. Bioinformatics 28:593–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Jeon J, Kim J (2013) Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, et al (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kacperska A (1989). Metabolic consequences of low temperature stress in chilling-insensitive plants. In PH Li, ed, Low Temperature Stress Physiology in Crops, CRC Press, Boca Raton, FL, pp 27–40

    Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967–981

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Ahn SY, Han JH, Kim SH, Noh JH, Yun HK (2013) Differential expression screening of defense related genes in dormant buds of cold-treated grapevines. Plant Breed Biotechnol 1:14–23

    Article  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Doring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis coldresponsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51:897–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and lowtemperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohrmann J, Harter K (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luby JJ, Mansfield AK, Hemstad PR, Beam BA (2003) Development and evaluation of cold hardy wine grape breeding selections and cultivars in the upper Midwest. AVERN Report

    Google Scholar 

  • Lv DK, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zue YM (2010) Profiling of cold-stress-responsive miRNA in rice by microarrays. Gene 459:39–47

    Article  CAS  PubMed  Google Scholar 

  • Lynch DV (1990) Chilling injury in plants: the relevance of membrane lipids. In F Katterman, ed, Environmental Injury to Plants, Academic press, New York, pp 17–34

    Google Scholar 

  • Ma YY, Zhang YL, Lu J (2010) Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J Agron Crop Sci 196:212–219

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A (2009) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9:81–96

    Article  CAS  PubMed  Google Scholar 

  • Motosugi H (2000) Growth comparison between own-rooted of Portland, Niagara, and Campbell Early vines and their tetraploid sports. J ASEV Jpn 11:8–14

    Google Scholar 

  • Nam JC, Park SJ, Jeong SM, Noh JH, Hur YY, Park KS (2012) Threshold of winter injury according to low temperature in dormancy and growing stage in several grape (Vitis hybrid) cultivars. Korean J Hortic Sci Technol 30:100–101

    Google Scholar 

  • Oono Y, Seki M, Satoum M, Iida K, Akiyama K, Sakurai T, Fujita M, Yamaguchi-Shinozaki K, Shinozaki K (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microaarays. Funct Integr Genomics 6:212–234

    Article  CAS  PubMed  Google Scholar 

  • Park GH, Lim JW, E GJ (2000) Management of chilling injury in grapevine shoots in unheated plastic house in Korea. 2000 Research Report. Kyunggi-do Agricultural Research and Extension Services, Korea, pp 388–397

    Google Scholar 

  • Pontin MA, Piccoli PN, Francisco R, Botini R, Martinez-Zapater JM, Lijavetzky (2010) Transcriptome changes in grapevines (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol 21:224

    Article  Google Scholar 

  • Ramamoorthy R, Jiang SY, Kumar N, Venkatesh PN, Ramachandran S (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13:691

    CAS  PubMed  Google Scholar 

  • Tattersall EAR, Grimplet J, DeLuc L, Whearley MD, Vincent D, Osborne C, Ergul A, Lomen E, Blank RR, Schlauch KA, et al (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genomics 7:317–333

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol 50: 571–599

    Article  CAS  Google Scholar 

  • Walker MA, McKersie BD, Pauls KP (1991) Effects of chilling on the biochemical and functional properties of thylakoid membranes. Plant Physiol 97:663–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Yang Y, Liu X, Huang J, Wang Q, Gu J, Lu Y (2014) Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC Genomics 15:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Liu D, SunJ, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162:81–89

    Article  CAS  PubMed  Google Scholar 

  • Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, et al (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Warmund MR, Guinan P, Fernandez G (2008) Temperatures and cold damage to small fruit crops across the Eastern United States associated with the April 2007 freeze. Hortic Sci 43:1643–1647

    Google Scholar 

  • White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci USA 103: 11217–11222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J, Sun X, Wang N, Londo JP, Li S (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS One 8:3

    Google Scholar 

  • Xu J (2014) Next-generation sequencing: Current Technologies and Applications. Caister Academic Press, Ontario, Canada

    Google Scholar 

  • Yamauchi Y, OgawaM, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Provart NJ (2003) Transcriptional responses to low temperature and their regulation in Arabidopsis. Can J Bot 81:1168–1174

    Article  CAS  Google Scholar 

  • Zononi S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152:1787–1795

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae Keun Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.A., Ahn, S.Y. & Yun, H.K. Transcriptome analysis of grapevine shoots exposed to chilling temperature for four weeks. Hortic. Environ. Biotechnol. 57, 161–172 (2016). https://doi.org/10.1007/s13580-015-0118-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0118-5

Additional key words

Navigation